Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Handbook of combinatorics (vol. 1)

Авторы: Graham R.L., Grotschel M., Lovasz L.

Аннотация:

Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
The 20 articles in Volume 1 deal with structures while the 24 articles in Volume 2 focus on aspects, tools, applications, and horizons.


Язык: en

Рубрика: Математика/Алгебра/Комбинаторика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 1120

Добавлена в каталог: 10.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Erdos, P.F.      1347; see “Burr S.A.”
Erdos, P.G.      1368; see “Brown T.C.”
Erdos, P.H.      705; see “Chowla S.”
Erdos, P.I.      40 1259; V.”
Erdos, P.J.      845; see “Conway J.H.”
Erdos, P.K.      237 651 697 812 829 842 2089; N.G.”
Erdos, P.L.      1306 1307; M.”
Erdos, Peter L.      1456
ErdSs — Faber — Lovasz problem      238
ErdSs — Frank — Rodl theorem      1253
ErdSs — Renyi graph      1242
Erdus — Gallai theorem      1263
Ergodic theory      1340 1366
Erickson, M.      1373
Erickson, R.E.      1565
EROS      1969
Essam, J.W.      1936; see “Sykes M.F.”
Essential component      987
Euclidean close vector problem      956
Euclidean group $\mathbb E_n$      941 942
Euclidean inner product      925
Euclidean motions      941
Euclidean norm      925
Euclidean Ramsey problems      860
Euclidean Ramsey theory      1371
Euclidean representation      487 504 766
Euclidean short vector problem      953
Euclidean unit ball      92S
Euler      1037
Euler characteristic      260 261 948 1053 1487 1489 1492 1493 1847
Euler relation      896 900
Euler theorem      877
Euler tour      65 216 1550
Euler — Maclaurin summation formula      1090
Euler — Poincarc formula      1847 1863
Euler. L.      7 65 2167 2168 2173 2176
Eulerian graph      65 163 2076 2176
Eulerian manifolds      897 900 901
Eulerian numbers      1042
Eulerian polynomials      1042 1045
Eulerian posets      897
Eulerian subdigraph      1582 1584
Eulerian subgraph      1581
Euler’s formula      261 318 2078 2119
Euler’s function      893 894
Euler’s polyhedral formula      817 1960 2177
Euler’s totient function      1059
Evans, D.M.      626 1729
Evans, T.      712
Evasive graph properties      1823
Evasiveness conjecture      1823
Even 2-factor      60
Even alteration theorem      2140
Even circuit      17 18 36
Even graph      7 9
Even, S.      161 193 1486 1589
Evens, M.      1970; see “Wang T.”
Evgrafov, M.A.      1151 1172
Evolution      356 1986
Evolving graphs      354
Ewald, G.      879 893 923 949 1841
Ewald, G.A.      886; see “Bokowski J.”
Exact matching problem      224 1589
Exceptional group      620
Excess of a digraph      87
Exchange heuristic      1553
Excluded subgraphs      1475
Expander      71 1482 1742 1743 1751 1754—1756 1758
Expanding to a triangle      61
expansion      1484
Expansion local      1483
Expansion rate      1558
Expansion xtremal graph      12 1167 1233
Experimental design      2182
Explicit construction      1265
Exponential formula      1041
Exponential generating functions      1040 1049 1073 1095
Exponential sums      987 991
Exponential-time algorithm      13
Expose and merge algorithm      373
Extcrnal distance      799 803
Extendable circuit      78
Extended code      778
Extended f-vector      899 900
Extension of a block design      701
Extension of a matroid      509 510
Extension of a set function      571
Extremal function      1233
Extremal graph theory      2179
Extremal lattice      940
Extremal set systems      1293
Extremal set theory      628
Extreme graph characteristics      370
f-factor      211
f-factor theorem      212
f-vector      879 895 896 898—900 903 909 1295 1840 1847
Faa di Bruno’s formula      1105
Face      55 92 392 877 878 1655 1859
Face colorings      259
Face lattice      877 889 903 1844
Face ring      1855
Face vector; see f-vector      895
Faceposet      1844 1860
Facet      877 878 889 1656 1843
Facet-inducing inequality      1656
Facial circuit      55
Facial structure      877
Factor critical graph      196
Factor hypergraph      418
Factorial      1076
Factoring      1619 2030
Factorization      425
Factorization of a hypergraph      385
Factorization theorem      2071
Fagin, R.      1337
Faigle, U.      521
Faithful dimension      843
Fajtlowiez, S.      256; see “Erdos P.”
Falikman, D.l.      947 1208
Falk, M.J.      2069 2070
Family $\nu$-critical      1295
Family $\tau$-critical      1295
Family complementary      1295
Family intersection-closed      1296
Family k-partite      1299
Family k-uniform      1295
Family s-wise t-intersecting      1295 1311
Family union-free      1324
Fan lemma      35
Fan, G.      24 85 86 94
Fan, G.A.      93; see “Bondy J.A.”
Fan-in      2012
Fan-out      2012
Fano hypergraph      18 63
Fano matroid      488 503 514
Fano plane      406 487 671 2181
Fano, G.      671 2181
Faradiev, I.A.      1506
Faradiev, L.A.      1502; see “Klin M.H.”
Farber, M.      400; see “Anstee R.P.”
Farkas lemma      604 2050
Farrell, E.J.      1731
Farthest neighbor problem      837
Fast multiplication of matrices      1345
Faudree, F.      1347
Faudree, R.      1347; see “Erdos P.”
Faudree, R.J.      78
feasible      1830
Feasible direction      1660
Feasible potential      121
Feasible set      579
Feder, T.      1465
Federico, P.D.J.      891; see “Duivestijn A.J.W.”
Fedorov, E.S.      922 941 944
Fedorynk, M.V.      1172 1212
Feedback arc set problem      1889 1890
Feige, U.      1744
Feigenbaum, E.A.      1969; see “Lindsay R.K.”
Feigenbaum, J.      1466 1467
Fein, B.      628
Feinstein, A.      126 2186; P.”
Feit — Higman theorem      675
Feit, W.      626 675 699 761 1498
Fejes Torn, L.      1459
Fejes-Toth, G.      838
Fejes-Toth, L.      820 923
Feller, W.      1125 1484
Fellows, M.R.      75; see “Barefoot C.A.”
Felsner, S.      443 454 462
Fenner, T.I.      371
Ferguson, T.S.      2135
Fernandez de la Vega, W.      1574
Ferrers diagram      633 1057 2173
Few, L.      940; see “Coxeter H.S.M.”
Fial, A.      1484
Fiala, T.      1411 1420; J.”
Fiber theorem      1849
Fibonacci heap      2020 2021 2023
Fibonacci numbers      1024 1101 1132 2021 2169
Fibonacci series      1976
Fibonacci tree      2021 2023
Fibulations      2147
Fiedler, J.R.      327
Fiedler, M.      1739
Figiel, T.      903 2042
Figure counting series      1963
Filotti, I.      1511
Filotti, L.S.      327
Filter      1295
FIND operation      2024—2026
Finek, H.-J.      250 251
Finitary permutation      639
Finite basis theorem for polytopes      1655
Finite cardinals      2110
Finite geometries      804
Finite graph      5
Finite intersection property      2113
Finite ordinal      2110
Finite projective plane      922 956
Finite Ramsey theorem      1333
Finite set      2110
Finite union theorem      1368
Finitely starlike      850
Finkelstein, L.      1482 1483 1517; L.”
Finkelstein, L.A.      1482 1517; G.”
Finney, R.L.      1847 1859 1861; G.E.”
Fiorini, S.      236 272
Firm geometry      651
FIRST-FIT DECREASING heuristic      1551
FIRST-FIT heuristic      1551 1575
First-moment method      356
First-order theory of graphs      364
First-passage percolation      1937
Fischer, B.      654
Fischer, M.J.      1629
Fischetti, M.      1903
Fishburn, P.      862; see “Erdos P.”
Fishburn, P.C.      435 446 448 459 463 465 467 1135 1281
Fisher, M.E.      1934
Fisher, M.X.      1884 1885
Fisher, R.A.      1707 2182
Fisher’s inequality      696 1707
Fisk, S.      262
Five-color theorem      237 257 277 2179
Fixed point      1862 1864
Fixed points in posets      1824
Fixed-point property      1824
Fixed-point sets      1824
Fixed-point-free element      628
FKG inequality      1805
Flag      680 1452
Flag geometry      675
Flag-transitive      1452 1454 1469 1504
Flajolet, P.      369 1098 1103 1141 1158 1164 1166—1168 1191 1192 1194 1200—1203 1205 1211
Flajolet, P.A.      1071; see “Vitter J.”
Flal of a matroid      484 490 497
Flament, C.      398
Flandrin, E.      25 1263; D.”
Flat manifolds      922 9S8
Flat of deficiency k      852
FLATS      497 859
Flatto, L.      1208
Fleischner, H.      52 73 74 80 90—92 155 277 2176
Flock      661
Flow      124 599
Flow equivalent tree      207
Flow-augmenting path      1661
Foata, D.      1024
Foata, D.A.      2171; see “Cartier P.”
Foata’s transformation      1024 1045
Fodor, G.      2114
Foldes, S.      267
Follcman, J.      518—520 888 1368 1373 1379 1452 1834 1836 1837 1847 1851 1857
Fomcnko, A.T.      888; see “Volodin L.A.”
Fong, P.      676
Fonlupt, J.      1673; see “Cook W.”
Foody, W.      1710
Foolball-pool problem      715 788
Forbidden graph      1233
Forbidden minor      1833
Forbidden subgraph      1268 2178
Forbidden subgraph problem      1233 1256
Forcade, R      31
Ford Jr, L.R.      121 1545 1661 1903
Ford, L.R.      114 125—127 129 133 136 2186 2188
Ford, L.R.A.      1659; see “Dantzig G.B.”
Foreman, M.D.      2093 2104
Forest      10 115 389 488 491
Forests      489
Formal power series      1114
Forney, G.D.      958
Forrester, P.J.      1942; see “Andrews G.E.”
Fort, Jr.M.K.      714
Fortum, C.M.      447 1930 1932
Fortune, S.      68 168 169
Fouquet, J.L.      74
Four-color problem      56 237 910 2178
Four-color theorem      56 238 248 258 291 295 332 541 2179
Fourier analysis      930
Fourier scries      922
Fourier, J.B.J.      2188
Fournier, I.      42 43 1262
Fournier, I.A.      25 1263; D.”
Fournier, J.-C.      392 419 1456
Fournier-Fraisse theorem      1262
Fractional (node-)cover      388
Fractional blocking      395
Fractional blocking number      388 396 408 409 1576 1577
Fractional blocking set      388 395
Fractional edge-coloring number      1690
Fractional Helly theorems      854
Fractional matching      219 388 395 412 1548
Fractional matching number      388 396 408
Fractional packing      1566 1567
Fraenkel, AS.      2119
Fragment      1470
Fraisse theorem      1260
Fraisse, P.      42 61 1260
Fraisse, P.A.      43 1262; I.”
Fraisse, R.      1508
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте