Авторизация
Поиск по указателям
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Handbook of combinatorics (vol. 1)
Авторы: Graham R.L., Grotschel M., Lovasz L.
Аннотация: Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
The 20 articles in Volume 1 deal with structures while the 24 articles in Volume 2 focus on aspects, tools, applications, and horizons.
Язык:
Рубрика: Математика /Алгебра /Комбинаторика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1995
Количество страниц: 1120
Добавлена в каталог: 10.03.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Erdos, P.F. 1347; see “Burr S.A.”
Erdos, P.G. 1368; see “Brown T.C.”
Erdos, P.H. 705; see “Chowla S.”
Erdos, P.I. 40 1259; V.”
Erdos, P.J. 845; see “Conway J.H.”
Erdos, P.K. 237 651 697 812 829 842 2089; N.G.”
Erdos, P.L. 1306 1307; M.”
Erdos, Peter L. 1456
ErdSs — Faber — Lovasz problem 238
ErdSs — Frank — Rodl theorem 1253
ErdSs — Renyi graph 1242
Erdus — Gallai theorem 1263
Ergodic theory 1340 1366
Erickson, M. 1373
Erickson, R.E. 1565
EROS 1969
Essam, J.W. 1936; see “Sykes M.F.”
Essential component 987
Euclidean close vector problem 956
Euclidean group 941 942
Euclidean inner product 925
Euclidean motions 941
Euclidean norm 925
Euclidean Ramsey problems 860
Euclidean Ramsey theory 1371
Euclidean representation 487 504 766
Euclidean short vector problem 953
Euclidean unit ball 92S
Euler 1037
Euler characteristic 260 261 948 1053 1487 1489 1492 1493 1847
Euler relation 896 900
Euler theorem 877
Euler tour 65 216 1550
Euler — Maclaurin summation formula 1090
Euler — Poincarc formula 1847 1863
Euler. L. 7 65 2167 2168 2173 2176
Eulerian graph 65 163 2076 2176
Eulerian manifolds 897 900 901
Eulerian numbers 1042
Eulerian polynomials 1042 1045
Eulerian posets 897
Eulerian subdigraph 1582 1584
Eulerian subgraph 1581
Euler’s formula 261 318 2078 2119
Euler’s function 893 894
Euler’s polyhedral formula 817 1960 2177
Euler’s totient function 1059
Evans, D.M. 626 1729
Evans, T. 712
Evasive graph properties 1823
Evasiveness conjecture 1823
Even 2-factor 60
Even alteration theorem 2140
Even circuit 17 18 36
Even graph 7 9
Even, S. 161 193 1486 1589
Evens, M. 1970; see “Wang T.”
Evgrafov, M.A. 1151 1172
Evolution 356 1986
Evolving graphs 354
Ewald, G. 879 893 923 949 1841
Ewald, G.A. 886; see “Bokowski J.”
Exact matching problem 224 1589
Exceptional group 620
Excess of a digraph 87
Exchange heuristic 1553
Excluded subgraphs 1475
Expander 71 1482 1742 1743 1751 1754—1756 1758
Expanding to a triangle 61
expansion 1484
Expansion local 1483
Expansion rate 1558
Expansion xtremal graph 12 1167 1233
Experimental design 2182
Explicit construction 1265
Exponential formula 1041
Exponential generating functions 1040 1049 1073 1095
Exponential sums 987 991
Exponential-time algorithm 13
Expose and merge algorithm 373
Extcrnal distance 799 803
Extendable circuit 78
Extended code 778
Extended f-vector 899 900
Extension of a block design 701
Extension of a matroid 509 510
Extension of a set function 571
Extremal function 1233
Extremal graph theory 2179
Extremal lattice 940
Extremal set systems 1293
Extremal set theory 628
Extreme graph characteristics 370
f-factor 211
f-factor theorem 212
f-vector 879 895 896 898—900 903 909 1295 1840 1847
Faa di Bruno’s formula 1105
Face 55 92 392 877 878 1655 1859
Face colorings 259
Face lattice 877 889 903 1844
Face ring 1855
Face vector; see f-vector 895
Faceposet 1844 1860
Facet 877 878 889 1656 1843
Facet-inducing inequality 1656
Facial circuit 55
Facial structure 877
Factor critical graph 196
Factor hypergraph 418
Factorial 1076
Factoring 1619 2030
Factorization 425
Factorization of a hypergraph 385
Factorization theorem 2071
Fagin, R. 1337
Faigle, U. 521
Faithful dimension 843
Fajtlowiez, S. 256; see “Erdos P.”
Falikman, D.l. 947 1208
Falk, M.J. 2069 2070
Family -critical 1295
Family -critical 1295
Family complementary 1295
Family intersection-closed 1296
Family k-partite 1299
Family k-uniform 1295
Family s-wise t-intersecting 1295 1311
Family union-free 1324
Fan lemma 35
Fan, G. 24 85 86 94
Fan, G.A. 93; see “Bondy J.A.”
Fan-in 2012
Fan-out 2012
Fano hypergraph 18 63
Fano matroid 488 503 514
Fano plane 406 487 671 2181
Fano, G. 671 2181
Faradiev, I.A. 1506
Faradiev, L.A. 1502; see “Klin M.H.”
Farber, M. 400; see “Anstee R.P.”
Farkas lemma 604 2050
Farrell, E.J. 1731
Farthest neighbor problem 837
Fast multiplication of matrices 1345
Faudree, F. 1347
Faudree, R. 1347; see “Erdos P.”
Faudree, R.J. 78
feasible 1830
Feasible direction 1660
Feasible potential 121
Feasible set 579
Feder, T. 1465
Federico, P.D.J. 891; see “Duivestijn A.J.W.”
Fedorov, E.S. 922 941 944
Fedorynk, M.V. 1172 1212
Feedback arc set problem 1889 1890
Feige, U. 1744
Feigenbaum, E.A. 1969; see “Lindsay R.K.”
Feigenbaum, J. 1466 1467
Fein, B. 628
Feinstein, A. 126 2186; P.”
Feit — Higman theorem 675
Feit, W. 626 675 699 761 1498
Fejes Torn, L. 1459
Fejes-Toth, G. 838
Fejes-Toth, L. 820 923
Feller, W. 1125 1484
Fellows, M.R. 75; see “Barefoot C.A.”
Felsner, S. 443 454 462
Fenner, T.I. 371
Ferguson, T.S. 2135
Fernandez de la Vega, W. 1574
Ferrers diagram 633 1057 2173
Few, L. 940; see “Coxeter H.S.M.”
Fial, A. 1484
Fiala, T. 1411 1420; J.”
Fiber theorem 1849
Fibonacci heap 2020 2021 2023
Fibonacci numbers 1024 1101 1132 2021 2169
Fibonacci series 1976
Fibonacci tree 2021 2023
Fibulations 2147
Fiedler, J.R. 327
Fiedler, M. 1739
Figiel, T. 903 2042
Figure counting series 1963
Filotti, I. 1511
Filotti, L.S. 327
Filter 1295
FIND operation 2024—2026
Finek, H.-J. 250 251
Finitary permutation 639
Finite basis theorem for polytopes 1655
Finite cardinals 2110
Finite geometries 804
Finite graph 5
Finite intersection property 2113
Finite ordinal 2110
Finite projective plane 922 956
Finite Ramsey theorem 1333
Finite set 2110
Finite union theorem 1368
Finitely starlike 850
Finkelstein, L. 1482 1483 1517; L.”
Finkelstein, L.A. 1482 1517; G.”
Finney, R.L. 1847 1859 1861; G.E.”
Fiorini, S. 236 272
Firm geometry 651
FIRST-FIT DECREASING heuristic 1551
FIRST-FIT heuristic 1551 1575
First-moment method 356
First-order theory of graphs 364
First-passage percolation 1937
Fischer, B. 654
Fischer, M.J. 1629
Fischetti, M. 1903
Fishburn, P. 862; see “Erdos P.”
Fishburn, P.C. 435 446 448 459 463 465 467 1135 1281
Fisher, M.E. 1934
Fisher, M.X. 1884 1885
Fisher, R.A. 1707 2182
Fisher’s inequality 696 1707
Fisk, S. 262
Five-color theorem 237 257 277 2179
Fixed point 1862 1864
Fixed points in posets 1824
Fixed-point property 1824
Fixed-point sets 1824
Fixed-point-free element 628
FKG inequality 1805
Flag 680 1452
Flag geometry 675
Flag-transitive 1452 1454 1469 1504
Flajolet, P. 369 1098 1103 1141 1158 1164 1166—1168 1191 1192 1194 1200—1203 1205 1211
Flajolet, P.A. 1071; see “Vitter J.”
Flal of a matroid 484 490 497
Flament, C. 398
Flandrin, E. 25 1263; D.”
Flat manifolds 922 9S8
Flat of deficiency k 852
FLATS 497 859
Flatto, L. 1208
Fleischner, H. 52 73 74 80 90—92 155 277 2176
Flock 661
Flow 124 599
Flow equivalent tree 207
Flow-augmenting path 1661
Foata, D. 1024
Foata, D.A. 2171; see “Cartier P.”
Foata’s transformation 1024 1045
Fodor, G. 2114
Foldes, S. 267
Follcman, J. 518—520 888 1368 1373 1379 1452 1834 1836 1837 1847 1851 1857
Fomcnko, A.T. 888; see “Volodin L.A.”
Fong, P. 676
Fonlupt, J. 1673; see “Cook W.”
Foody, W. 1710
Foolball-pool problem 715 788
Forbidden graph 1233
Forbidden minor 1833
Forbidden subgraph 1268 2178
Forbidden subgraph problem 1233 1256
Forcade, R 31
Ford Jr, L.R. 121 1545 1661 1903
Ford, L.R. 114 125—127 129 133 136 2186 2188
Ford, L.R.A. 1659; see “Dantzig G.B.”
Foreman, M.D. 2093 2104
Forest 10 115 389 488 491
Forests 489
Formal power series 1114
Forney, G.D. 958
Forrester, P.J. 1942; see “Andrews G.E.”
Fort, Jr.M.K. 714
Fortum, C.M. 447 1930 1932
Fortune, S. 68 168 169
Fouquet, J.L. 74
Four-color problem 56 237 910 2178
Four-color theorem 56 238 248 258 291 295 332 541 2179
Fourier analysis 930
Fourier scries 922
Fourier, J.B.J. 2188
Fournier, I. 42 43 1262
Fournier, I.A. 25 1263; D.”
Fournier, J.-C. 392 419 1456
Fournier-Fraisse theorem 1262
Fractional (node-)cover 388
Fractional blocking 395
Fractional blocking number 388 396 408 409 1576 1577
Fractional blocking set 388 395
Fractional edge-coloring number 1690
Fractional Helly theorems 854
Fractional matching 219 388 395 412 1548
Fractional matching number 388 396 408
Fractional packing 1566 1567
Fraenkel, AS. 2119
Fragment 1470
Fraisse theorem 1260
Fraisse, P. 42 61 1260
Fraisse, P.A. 43 1262; I.”
Fraisse, R. 1508
Реклама