Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Handbook of combinatorics (vol. 1)
Àâòîðû: Graham R.L., Grotschel M., Lovasz L.
Àííîòàöèÿ: Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
The 20 articles in Volume 1 deal with structures while the 24 articles in Volume 2 focus on aspects, tools, applications, and horizons.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Àëãåáðà /Êîìáèíàòîðèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1995
Êîëè÷åñòâî ñòðàíèö: 1120
Äîáàâëåíà â êàòàëîã: 10.03.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Motzkin, T.S.A. 882 907; G.”
Moufang polygon 676
Mount, D.M. 1460 1511; L.”
Muehlbacher, J. 220
Muller theorem 240
Muller, V. 240 1521 1722
Muller, W.R. 1961 1962; J.V.”
Mullin, R.C. 703
Mullin, R.C.A. 714; see “Hartman A.”
Mullin, R.C.B. 714; see Lamken E.R.
Mullin, R.C.C. 714; see Mills W.H.
Mullin, R.C.D. 805; see “Blake I.F.”
Mulmulcy, K. 224 225 1589 1732 1803
Multicommodity flows 159 218 548 2041
Multicomplex 896
Multicut 166
Multidimensional continued fractions 958
Multigraph 5
Multinomial theorem 2167 2169
Multipartite hypergraphs 414
Multiple alignment 1990
Multiple edges 5 15
Multiple transitive group 623 625
Multiplication table 997
Multiplicity 386 426
Multiplicity free 766
Multiplied Helly theorems 852
Multiports 1913
Multisets 1036
Multiterminal and multicommodity flows 2188
Multivariate generating functions 1186
Mumford, D. 958
Mumford, D.A. 951 958; G.F.”
Munkrcs, J.R. 1842 1846 1856 1858 1859
Murasugi, K. 2078
Murota, K. 1913 1919 1923
Murray, S.H. 1484; see “Celler R.”
Murty, K.G. 215
Murty, U.S.R. 57; see “Bondy J.A.”
Mutually orthogonal Latin squares (MOLS) 672 705 2182
Muzychuk, M.E. 1502; see “Klin M.H.”
Mycielski, J. 240
Myers, E.W. 1990; see “Miller W.”
n-arc 778
n-cube 1496
n-parameter set 1361 1364
Naddef, D. 210 909 1656
Nagamochi, H. 117
Naik, R.N. 392
Nakamura, A. 150; see “Watanabe T.”
Nakamura, M. 580 581
Narayana numbers 1034
Narayanan, H. 1921
Nash-Williams theorem 1258 1261
Nash-Williams, C.Sl.J.A. 65; see “Harary F.”
Nash-Williams, C.St.J.A. 25 27 28 41 88 145 148 297 343 501 562 1258 1261 1356 1521 1744
Nathans, D. 1994
Nathanson, M.B. 985 987
Nathanson, M.B.A. 987; see “Erdijs P.”
Neaderhouser, C.C. 836
Near polygon 685
NEAREST INSERTION heuristic 1549 1550
NEAREST NEIGHBOR heuristic 1549
Nearly perfect code 783
Necklace problem 1965
Negacyclic 784
Negami, S. 539
Negative circuit 133
Negative of a game 2124
Negative type cone 2049
Neietril, J. 1351; see “Alon N.”
Neighbor 5
Neighborhood complex 253 1825 1827 1851
Neighborliness 902
Neighborly 893 894
Nelson, R. 236
Nemetz, T. 406 714 1320; G.O.H.”
Nemhauser, G.L. 183 219 404 1545 1574 1695
Nemhauser, G.L.A. 1892; see “Carlson R.C.”
Nemhauser, G.L.B. 1896; see “Hsu W.-L.”
Nemhauser, G.L.C. 1669 1695 1696 see Y.”
Nemirovskil, A.S. 1661; see “Yudin D.B.”
Nerve 1849
Nerve theorem 1850
Neselril, J.A 1357 1367; P.”
Nesetril, J. 240 424 1333 1336 1337 1340 1351 1355 1356 1369 1370 1373—1377 1379—1382 1385—1389 1391—1393
Nesetril, J.B. 276; see “Hell P.”
Nesetril, J.C. 1368; see “Jciek J.”
Nesetril, J.D, 462; see “Kriz I.”
Nesetril, J.E. 1355; see “Loebl M.”
Nested family 203 1566
Net 684 685
Network flows 1685
Neubuscr, J.F. 943; see “Brown H.”
Neumaier, A. 681 685 702 759 768 1734
Neumaier, A.A. 629 750 762 766 1449 1504—1506; A.E.”
Neumaier’s geometry 681
Neumann, B.H. 640; see “Higman G.”
Neumann, H. 640; see “Higman G.”
Neumann, P.M. 616 638 639 1483 2171
Neumann, P.M.A. 627; see “Cameron P.J.”
Neumann, P.M.B. 637; see “Melver A.”
Neumann-Lara, V. 147; see Lovasz L.
Neumann-Lara, Y. 256
Neumeier, A. 958
Newman, D.J. 21
Newman, M. 924 1751 1756
Newton series 1099
NEXT-FIT heuristic 1551
Nicholson, P. 2168 2169
Niederreiter, H. 1426; see “Kuipers L.”
Niemeyer, A.C. 1484; see “Celler F.”
Nijrlund, N.E. 1090 1092 1131
Nilli, A. 1344
Nilpotent groups 1478
NIM 2120 2133 2142
Nim-addition 2133 2138
Nim-multiplication 2144
Nim-sequence 2135
Nim-values 2133 2135
Nimber 2133
Nincak, J. 79
Nisan, K. 2005; see “Babai L.”
Nisan, N. 1744; see “Kahn J.D.”
Nishizeki, T. 275
Noda, R. 697; see “Enomoto H.”
Node 5 383 386
Node coloring 1635
Node cover 181 387
Node packing 181
Node-cover polytope 1666
Node-cover problem 1617
Non-Archimedean valuations 863
Non-bipartite maximum matching 1610
Non-deterministic communication complexity 2008
Non-deterministic polynomial-time 14
Non-deterministic protocols 2008
Non-deterministic Turing machine 1606—1608 1616 1622 1625
Non-evasive complex 1823 1853
Non-Fano mairoid 507
Non-linear iteration 1199
Non-linear recurrences 1139
Non-orientable surfaces 261
Non-Pappus matroid 504 508
Non-rcpresentable mairoid 504
Non-rigid molecular species 1965
Non-separable 10 584
Non-separable matroid 491
Non-separating 91
Non-separating circuit 58
Non-uniform 1604 1613
Nordhaus, E.A. 1238
Nordstrom — Robinson code 796
Norm 925 2041 2042
Norm 2042
Norm 2042
Norm Euclidean 2042
Norm polyhedral 2043
Normal distribution 1809 1814
Normal hypergraph 384 395 401
Normal play 2121 2149
Normal rational curve 661
Normal ultrafilter 2102
Normalized internal angle 946
Northcott, D.G. 1720 1732
Norton, S.P. 622; see “Conway J.H.”
Nowhere-zero flow 291 1940
Nowhere-zero H-flow 513
Nowhere-zero k-flow 291
Nowhere-zero n-flow 513
Nowitz, LA. 1500 1502
Nucleus 659
Null design 1721
NUMBER 2130
Number of permutations 2165
Number of subsets 2165 2166
Number of ways of choosing k objects 2167
Number theory 1751 1758 1774
Numbered complex 1858
Numerical analysis 958
Numerical graph invariants 1974
Nyikos, P.J. 1510; see “Kierstead H.A.”
O pposite regulus 670
O-sequence 896 898 902
Oberhettinger, F. 1192 1212
Oberly, D.J. 66
Oberschelp, W. 704 715
Objective function 1543 1579
octahedron 6 415
Octal games 2136
Oda, T. 958 1841
Odd circuit 14 17 36
Odd girth 2105
Odd set cover 182
Odd-cycle inequality 1568 1570 1571
Odd-cycle property 210
Odlyzko, A. 1145; see “Erdos P.”
Odlyzko, A.M. 955 1122 1157 1159 1160 1181 1203 1204
Odlyzko, A.M.A. 1773; see Alon N.
Odlyzko, A.M.B. 727 763 765; M.R.”
Odlyzko, A.M.C. 1206; see “Chung F.R.K.”
Odlyzko, A.M.D. 1135; see “Fishbura P.C.”
Odlyzko, A.M.E. 1146; see “Greenberg A.G.”
Odlyzko, A.M.F. 1098 1141 1164 1166—1168 1200—1203; P.”
Odlyzko, A.M.G. 1187 1188 1989; J.R.”
Odlyzko, A.M.H. 1103 1134 1194; L.J.”
Odlyzko, A.M.I. 1153; see “Knopftnachcr A.”
Odlyzko, A.M.J. 954; see “Ugarias J.C.”
Odlyzko, A.M.K. 1108; see “Mallows C.L.”
Odlyzko, A.M.L. 1122; see “Mazo J.E.”
Odlyzko, A.M.M. 1203; see “Wright R.A.”
Offord, A.C. 2187; see “Littlewood J.E.”
Ogasawara, M. 763
Ohmori, H. 716; see “Hamada N.”
Ohtsuki, T. 1921
Okamura, H. 163 164
Olaru, E. 269
Oleinik, O.A. 1761
Oligomorphic 640
Oliver, R. 1823
Ollman, L.T. 1273
Olson, J.E. 1410 1768 1770
Olver, F.W.J. 1092 1094 1095 1172 1212
On-line algorithm 441
On-line heuristic 1552
On-line partition 441
On-line problem 1544
Onaga, K. 160 2050
One-sided irregularities 1440
One-way functions 2027—2030 2032 2033
One-way infinite path 2089
Open cell 1860
Open interval 1843
Open walk 9
Oppenheim, R. 397; see “Fulkerson D.R.”
Optimal code 780
Optimal partial k-path coloring 50
Optimal partial k-path partition 50
Optimization problem 958 1602 1662
Optimum arborescence problem 1580
Oracle 556 1602 1620—1622 1625—1627
Oracle Turing machine 1621
Orbit-counting lemma 616 1462
Orbit-counting theorem 2171 2172
Orbitals 766
Orbits 1058
Orchard problem 823
Orchel, AW. 656
Ordaz, O. 42 45; B.”
Order 386
Order complex 1844
Order diagram 436
Order homotopy theorem 1851
Order of a graph 5
Order-ideals 1844
Order-preserving map 437 1824 1844 1852
Order-reversing map 1824 1844
Ordered field 889
Ordered partitions of a set 1040
Ordered set 435 2109
Ordered tree 1033
Ordering lemma 1376
Ordinal 2109
Ordinal arithmetic 1354
Ordinal number 1354 2109
Ordinal sum 1S45 2138
Ordinary generating function 1073 1095
Ordinary line 812
Ordinary partition symbol 2093
Ore theorem 23
Ore, O. 23 28 42 237 258 1257 1497 2176
Orientable 518
Orientable matroid 1835
Orientable surfaces 261
Orientation 15 119 145 148
Oriented circuit 1835
Oriented graph 15
Oriented linear 1835
Oriented matroid 517 519 604 g87 888 1834 1835 2066
Oriented realizable 1835
Oriented stability number 45
Orlik — Solomon algebra 2068
Orlik, P. 1822 1857 2065 2068
Orlin, J.B. 114 125 128; R.K.”
Orlin, J.P 135
Ornstein, D. 1440; see “Fuerstcnberg H.”
Ornstein, D.A. 715; see “Hanani H.”
Orszag, S.A. 1210; see “Bender C.M.”
Orthogonal array 765 798 1715
Orthogonal group 620 1460
Orthogonal Latin squares 2168 2180
Orthogonal polar space 663
Orthogonal representation 271
Orthogonal resolutions 712
Orthogonality relation 756
Ostmann, H. 987
Ostrom — Wagner theorem 654 670
Ostrom, T.G. 654 669 670
Ota, K. 75; see “Dean N.”
Ota, K.A. 1308 1313; P.”
Ðåêëàìà