Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Handbook of combinatorics (vol. 1)Àâòîðû:   Graham R.L., Grotschel M., Lovasz L.Àííîòàöèÿ:  Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
ßçûê:  Ðóáðèêà:  Ìàòåìàòèêà /Àëãåáðà /Êîìáèíàòîðèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  1995Êîëè÷åñòâî ñòðàíèö:  1120Äîáàâëåíà â êàòàëîã:  10.03.2005Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Seress, A. B. 1518; see “Beals R.” Series-parallel graph 330 538 Serre, J.-P. 630 828 1481 1493—1495 Serre, X. 1965; see “Maruani J.” Serre’s problem 828 Sesquilinear form 663 Set disjointness 2008 Set partitions with distinct block sizes 1152 Set theoretic tree 2090 Set-chromatic number 277 Set-colorings 277 Set-covering problem 922 1696 1894 Set-packing problem 1696 Set-partitioning problem 1696 Sevast’yanov, B.A. 1090 1210 1213; V.F.” Seymour, P. 447 1725 Seymour, P.A. 238 391; N.” Seymour, P.D. 17 18 35 86 91—93 162—165 210 217 275 277 292 295—297 402 404 416 421 427 505 513 515 531 534—537 539 541—543 547 548 584 586 596 598—600 832 1665 1682 1691 Seymour, P.D.A. 412; see “Fttredi Z.” Seymour, P.D.B. 546; see “Oerards B.” Seymour, P.D.D. 163; see “Okamura H.” Seymour, P.D.E. 8 160 161 166 258 304 305 334 336—343 536 2178; N. Seymour, P.D.F. 404; see “Schrijver A.” Seymour, PD.C. 531; see “Kahn J.” SGS see “Strong generating set” Shabby, N. 714; see “Assaf A.M.” Shafarevich, I.R. 2057 Shafarevich, I.R.A. 1751 1767; Z.I.” Shallcross, D.F. 1878 1880; R.G.” Shamir, A. 2030 Shamir, A.A. 161; see “Even S.” Shamir, A.B. 1484; see “Fiat A.” Shamir, A.C. 2030; see “Rivest R.L.” Shamir, E. 373 375 Shamir, R. 1636 Shannon capacity 410 1464 1471 1736 Shannon game 563 Shannon theorem 272 274 Shannon, C.E. 271 274 775 776 Shannon, C.E.A. 126 2186; P.” Shannon, R.W. 831 Shape of a face 884 886 Shapiro, H.D.A 1275; see “Clark L.H.” Shapiro, H.D.B. 1896; see “Moret B.M.E.” Shapiro, L. 1438 1439; H.” Shapiro, L.W. 1184 1211; S.” Sharir, M. 865; see “Aronov B.” Sharir, M.A. 823 825 1299; Sharir, M.B. 827; see “Edelsbrunncr H.” Sharir, M.C. 844 846; J.” Sharp, H. 1305; see “Bang C.” Shdah’s pidgeonhole lemma 1342 Shearer, J.B. 401 444 1350 Sheehan, J. 80 Shelah, S. 364 1004 1341 1367 1501 2093 2113 Shelah, S.A. 2106; see “Erdos P.” Shelah, S.B. 2104; see “Foreman M.D.” Shellability 880 883 887 901 2061 Shellable ball 899 Shellable complex 1854 Shelling 880 887 901 1854 Shemer, I. 894 Shemer, I.A. 894; see “Bokowski J.” Shephard, G.C. 886 Shephard, G.C.A. 303 311 811 815 816 923 1490; B.” Shephard, G.C.B. 879 893; P.” Shepp, L. 446 447 Shepp, L.A. 1167 Shepp, L.A.A. 1155; see “Logan B.F.” Sherali, H.D. 1593 Shi theorem 1263 Shi, R.H. 24 74 Shi, R.H.A. 24; see “Tian F.” Shi, Ronghua 1263 Shifting 1298 Shifting algorithm 588 Shiloach, Y. 128 165 170 536 Shimamoto, T. 749 754; R.C.” Shimsoni, I. 1484; see “Fiat A.” Shlosman, S.B. 1829 1865; I.” Shmoys, D.B. 1578 1635 Shmoys, D.B.A. 20 1545 1882 1906 1907 2188; E.L.” Shmoys, D.B.B. 1578; see “Lcnstra J.K.” Shohat, J.A. 1112 Shor, N.Z. 1661 Shortest path 216 1685 2018 2187 Shortest spanning tree 1545 1550 1579 2023 Shortest-path problem 2187 Shortest-route polytope 1670 Shortest-vector problem 1619 Shpectorov, S.V. 768; see “Ivanov A.A.” Shrikhande, S.S. 685 698 702 711 713 730 Shrikhande, S.S.A. 702 705 707 2183; R.C.” Shrikhande, S.S.B. 392; see “Naik R.N.” Shrinkable graph 197 Shrinking 191 Shtogrin, M.L. 923; see “Delonc B.N.” Shubert, B.O. 1203; see “Brown G.G.” Shuffles 1987 Shult, E.E. 685 Shult, E.E.A. 767 768 1734; P.J.” Shult, E.E.B. 664.; see “Buekenhout F.” si-path 146 Sibert, W.L. 2150 2159 Sidon set 988 Sidorenko, A.F. 1347 Sidorenko, F. 1322 Siegel measure 932 Siegel, C.L. 930 932 Siegel’s mean value theorem 932 Sieve methods 970 2171 Sieve of Eratosthenes 972 Sieveking, M. 952; see “von zur Gathen J.” Sign function 518 Sign vector 603 Signature problem 2032 Signed bases 888 1838 Signed graphs 2076 2077 Silver, J.H. 2102 2113 Silverberg, E.B. 1903; see “Arkin E.M.” Simic, S.K. 1520; see “Cvelkovic D.M.” Similar ordered sets 2109 Simmons, G.J. 820 Simmons, G.J.A. 865; see “Erdos P.” Simmons, H.E. 1958; see “Merrifield R.E.” Simon, J. 1960 Simon, J.A. 2007 2010; L.” Simon, J.B. 1765; see “Paturi R.” Simonovils, M. 243 244 1249 1250 Simonovils, M.C. 1244 1250; B.” Simonovits theorem 1249 Simonovits, M.A. 1236; see “Babai L.” Simonovits, M.B. 419; see “Berge C.” Simonovits, M.D. 76 1264 1474; J.A.” Simonovits, M.E. 239 843 1243 1247—1249 1251 1383; P.” Simonovits, M.F. 1347; see “Faudree F.” Simonovits, M.G. 406 714 1320; G.O.H.” Simonovits, M.H. 1238 1558 1559; L.” Simpiicial polytope 897 1840 Simple arrangements 816 821 Simple closed contour 1149 Simple graph 5 Simple group 2056 2057 Simple hypergraph 387 Simple labeled graph of high degree 1188 Simple matroid 490 498 830 Simple polyhedron 879 simplex 661 879 897 938 1859 Simplex algorithm 901 Simplex face 1842 Simplex method 1635 1657 2188 Simplicial 879 880 Simplicial 3-polytopes 891 Simplicial arrangements 821 Simplicial complexes 388 391 423 896 1842 2178 Simplicial convex polytope 1857 Simplicial d-polytopes 893 Simplicial decomposition 328 Simplicial map 1843 Simplicial sphere 901 908 Simplicity of a game 2122 Simply connected 1846 Simpson, S.G. 1356 Simpson, S.G.A. 1340 1357 1370; T.J.” Sims conjecture 628 1452 Sims, C.C. 1452 1516 1517 Simulated annealing 1559 1950 1996 Simultaneous Diophantine approximation 1583 Sinclair, A J. 1558 Sinclair, A. 1741 1742; M.” Sinclair, A.J.A. 1559 1951; M.R.” Singer cycle 656 Singer, J. 699 729 2183 Singerman, D. 1487; see “Jones G.A.” Singh, L.P.S. 714; see “Assaf A.M.” Singhi, N.M. 702; see “Bose R.C.” Singhi, N.M.A. 698 713 730; S.S.” Singhi, N.W. 392; see “Naik R.N.” Single design 695 Single element extension 509 Single-depot vehicle routing problem 1883 Singleton bound 777 781 Singleton, R.R. 752 1729; A.J.” Singular cardinal 2112 Singularity 1148 Sink 15 906 907 Sipser, M. 1625 2013; M.” Siran, J. 54; see “Horak P.” Sirovich, L. 1212 Site percolation 1934 Size of a Boolean circuit 2012 Size of a graph 5 Size of a hypergraph 386 1295 Size reduction 928 954 Skew-symmetric matrix 222 Skiena, S. 837; see “Edelsbrunner H.” Skolem sequence 709 Skolem, Th. 709 Skolnick, M. 1993; see “Botstein D.” Skupien, Z. 324 1260 Slade, G. 1940; see “Hara T.” Slade, G.A. 1940; see “Madras N.” Slanina, Z. 1960 Slater, P.J. 398 1278 Sleator, D.D. 1778 1779 Sleator, D.D.K. 128 Slegun, I.A. 1090; see “Abramowitz M.” Slimmest arrangements of hyperplanes 831 Sloan, N.J.A. 1992 Sloane, N. 821 823; S.” Sloane, N.J.A. 1076 Sloane, N.J.A.A. 1142 1144; A.V.” Sloane, N.J.A.B. 938; see “Bannai E.” Sloane, N.J.A.C. 727 763 765; M.R.” Sloane, N.J.A.D. 797 958; A.R.” Sloane, N.J.A.E. 1473; see Conway J.A. Sloane, N.J.A.F. 729 923 936 938 940 958 2144 2145; J.H.” Sloane, N.J.A.H. 673 703 715 721 750 763 765 776 780 793 794 796 801 802 806 1722 2183; F.J.” Sloane, N.J.A.I. 1108; see “Mallows C.L.” Sloane, N.J.A.J. 727; see “Pless Y.” Small maximal degree 1279 Small singularities 1148 1163 Smallest last ordering 245 Smetaniuk, B. 713 Smith theorem 60 Smith, C.A.B.A. 2145 2149 Smith, C.A.B.B. 2137 2150; P.M.” Smith, C.A.B.C. 2135; see “Guy R.K.” Smith, D.H. 629 1506 Smith, D.H.A. 1506; see “Biggs N.L.” Smith, H.O. 1994; see “Nathans D.” Smith, K.J.C. 716 Smith, M.S. 729 Smith, S.D. 1857 Smith, T.E. 1992; see “Howell J.A.” Smith, T.F. 1991; see “Waterman M.S.” Smolensky, R. 2016 Smolensky, R.A. 1744; see “Chandra A.K.” Smythe, R.T. 1938 Snake-oil method 1078 1100 Snarks 275 Snay, R.A. 1913; see “Spriggs J.R.” Sneddon, I.N. 1192 Snell, J.L. 1484 1740 1744; P.G.” Snover, S.L. 796 Snyder, L. 1285; see “Upton R.J.” Socle 617 Soiting 1758 Sole, P. 797; see “Calderbank A.R.” Sole, P.A. 1124; see “Gardy D.” Sole, P.B. 797; see “Hammons Jr.A.R.” Solitar, D. 1494 1751; W.” Solomon, L. 2072 Solomon, L.A. 761; see “Kilmoyer R.” Solomon, L.B. 2068; see “Orlik P.” Solomon, R. 637; see “Cameron F.J.” Solomon, R.A. 1504; see “Gorcnstein D.” Solovay, R.B. 1612 2102 2115 Solovay, R.C. 1621; see “Baker T.” Solovay, R.D. 1354 1355; J.” Solvable in polynomial time 1662 Soria, M. 1191; see “Flajolet P.” Sorting network 1754 Sos, V.T. 834 835 1240; P.” Sos, V.T.A. 1407 1438 1440 1441 Sos, V.T.B. 1474 1482; L.” Sos, V.T.C. 1441; see “Dupain Y.” Sos, V.T.D. 76 377 990 1241 1340 1347 1383; P.” Sos, V.X. 715; see Hanani H. Soteros, C.E. 1939; see “Whittington S.G.” Sotteau, D. 90; see “Alspach B.” Sotteau, D.A. 392; see “Bermond J.-C.” Soumis, E. 1885; see “Dcsrochers M.” Soundararajan, K. 1008; see “Balasubramanian R.” Source 15 906 Space complexity 1610 1637 Space groups 922 941 943 Span of a bridge 58 Spanier, E.H. 1842 1843 1846 1847 1850 1859 2069 Spanning sets 484 492 512 Spanning subgraph 7 Spanning subgraph problem 2011 Spanning supergiaph 7 Spanning tree 11 489 Sparks, N. 1357 Sparse graph 239 Sparse Halcs — Jewett theorem 1387 Spcmer it-family 438 Spectrum 1972 Spence, E. 731 Spencer, D.C. 1345; see “Salem R.” Spencer, J. 365 369 459 834 1112 1351 1366 1373 1375 1387 1410 1411 1417 1420 1421 1475 1787 1788 1802 1808 Spencer, J.A. 1333 1346 1351 1787; N.” Spencer, J.B. 1236; see “Babai L.” Spencer, J.C. 834 1415 1417—1419 1426; J.” Spencer, J.D. 422 836 1112 1210 1213 1371 1787; P.” Spencer, J.E. 1415—1417; see “Lovasz L.” Spencer, J.F. 1425; see “Matousek J.” Spencer, J.G. 1410; see “Olson J.E.” Spencer, J.H.A. 408; see “Ajtai M.” 
                            
                     
                  
			Ðåêëàìà