Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of combinatorics (vol. 1)

Àâòîðû: Graham R.L., Grotschel M., Lovasz L.

Àííîòàöèÿ:

Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
The 20 articles in Volume 1 deal with structures while the 24 articles in Volume 2 focus on aspects, tools, applications, and horizons.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Êîìáèíàòîðèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 1120

Äîáàâëåíà â êàòàëîã: 10.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Spencer, J.H.B.      1210 1212; N.”
Spencer, J.H.C.      1347; see “Burr S.A.”
Spencer, J.H.D.      72 999 1004 1006 1333 1344 1359 1389 1759 2093 2185; R.L.”
Spencer, J.H.F.      410 425; N.”
Spencer, J.I.      373 375; E.”
Spencer, J.J.      364; see “Shelah S.”
Spencer, J.K.      1276 1277 1279; N.”
Spencer, J.L.      377; see “Graham R.L.”
Sperner family      2186
Sperner poset      444
Sperner theorem      1296
Sperner, E.      444 1270 1296 1862 2186
Sperner’s lemma      444 1862 2186
Sphere      778 880 883 1836 1846
Spherical building      679
Spherical GAB      681
Spieker, B.      2007
Spin glass      1946 1947 1950
Spinster      2139
Spitzer, F.      1744
Split graphs      266
Split off      154
Splitting of vertex      241
Sporadic group      622
Sprague, A.      666 683
Sprague, R.P.      2133 2139
Sprague-Grundy theory      2134
SPREAD      669
Spreads on quadrics      796
Spriggs, J.R.      1913
Sprinrad, J.      590
Sprott, D.A.      730; see “Stanton R.G.”
Sprouts      2160
Square design      650 695
Square lattice graph      684
Square of a graph      52
Squashing of a tree      2100
Sreedharan, V.      885 893; B.”
Stabiliser      615
Stability molecules      1973 1974
Stability number      40 387 406 422 1591
Stable property      1257
Stable set      40 43 181 225 243 262 387 405 1299 1591 1641
Stable-set polytope      219 269 1591 1667 1687 1693
Stable-set problem      1592 1617
Stacked polytope      899 902
Stahl, S.      321 326
Stallingl, J.      1480
Stallmann, M.      560 561 579; H.”
Standard example      456
Standard monomials      2059
Standard normal distribution      366
Standard tableaux      635 2064
Stankevich, I.V.      1975; see “Stankevich M.I.”
Stankevich, M.I.      1975
Stanley — Reisner ring      1855 2059
Stanley, R.P.      435 450 895—898 900—902 947 949 1023 1039 1055 1058 1088 1089 1098 1104 1109 1111 1114 1213 1708 1710 1711 1723 1751 1779 1780 1839—1842 1854 1856—1858 1944 2061 2067 2072
Stanley, R.P.A.      1856 2060; A.”
Stanton — Cowan numbers      1988
Stanton, D.      765 1023 1048 1053
Stanton, D.A.      839; see “Barniai E.”
Stanton, R.G.      715 730
Stanton, R.G.A.      714; see “Billington E.J.”
Star      6 386 387 1280 1845 2123
Star body      924 929 934
Star system      1518
Star-shaped      850
Star-triangle transformation      1946
Star-two      2126
Stationary      2114
Stationary distribution      1558
Stationary phase method      1094
Statistical mechanics      1210
Steams, R.E.B.      1549; see “Rosenkrantz D.
Stearns, R.E.A.      1628; see “Hartmanis J.”
Steckin, B.S.      1275; see Frankl P.
Steele, J.M.      1762
Steger, A.      1255; see “Promel H.J.”
Steiger, W.      865; see “Pach J.”
Steiger, W.L.      991; see “Pinlz J.”
Steiglilz, K.      183 1659; C.H.”
Stein, P.R.      1992
Stein, S.      864
Stein, S.K.      409 418 1548
Steinberg, L.      893; see “Altshuler A.”
Steinberg, R.      236 260 620
Steiner quadruple system      703 1498
Steiner system      499 500 696 751
Steiner triple system (STS)      654 708 1456 1498 1501 1511 2181
Steiner, J.      2181
Steinertree      1563 1564 1571 1573
Steinhaus, H.      2145
Steinitz problem      878 885
Steinitz theorem      310
Steinitz, E.      878 882 885 899 1655
Steinitz-Maclane axiom      485
Steinlein, H.      1864
Steinparz, E.      220; see “Muhlbacher J.”
Stellar subdivisions      902
Stellmacher, B.      1504; see “Delgado A.”
Stembridge, J.R.      1732
Stepanov, V.E.      354 361
Sterboul, E      220
Stereoisomers      1960 1965 1970
Stevens, W.L.      2182
Stewart, B.M.      1238; see “Nordhaus E.A.”
Stewart, C.L.      991; see “GyBry K.”
Stewart, C.L.A.      991
Stewart, C.L.B.      991; see “Erdos P.”
Stiebitz, M.      242 254
Stiebitz, M.A.      277; see “Fleischner H.”
Stiebitz, M.B.      236 255 2167; H.”
Stiegler, G J.      2189
Stinson, D.R.A.      711 730
Stinson, D.R.B.      714; see “Billington E.J.”
Stinsor, D.R.C.      712; see “Seah E.”
Stinton, D.R.D.      711; see “Rees R.”
Stirling numbers      1095 1182
Stirling of the first kind      1025 1027 1041
Stirling of the second kind      1041
Stirling’s formula      1067 1076 1091 1173 1179
Stoane, N.J.A.G.      797; see “Hammons Jr.A.R.”
Stockmeycr, L.J.      1629
Stockmeyer, L.      246; see “Garey M.R.”
Stockmeyer, L.J.A.      1623; see “Chandra A.K.”
Stockmeyer, L.J.B.      1625; see “Meyer A.R.”
Stockmeyer, P.K.      1521
Stoer, J.      1654
Stoer, M.      1573; see “Grotschel M.”
Stohr, A.      987
Stolarsky, KB.      1194 1437
Stone, A.H.; see Erdos, P.      239 836 1243 1244
Stong, R.      89
Stong, R.E.      1844 1854 1857
Straight line program      1519
Straight, H.J.      1281
Straightening syzygies      2062
Strambach, K.      639; see “Barlotti A.”
Strange, K.E.      166
Strassen, V.      2016
Strassen, V.A.      1612; see “Solovay R.”
Straus, E.G.      705; see “Chowla S.”
Straus, E.G.A.      862 865 1371; P.”
Straus, E.G.B.      848; see “Graham R.L.”
Straus, E.G.C.      863; see “Hales A.W.”
Street, A.P.      2182
Street, A.P.A.      712 730 752; W.D.”
Street, D.J.      2182; see “Street A.P.”
Stresses      900
Strict complete digraph      15
Strict digraph      15
Strict xyz-conjecture      446
String graph      314
Strommer, T.O.      821 822
Stromquist, W.R.      262; see “Alberlson M.O.”
Strong (strongly connected) digraph      16
Strong Chvatal rank      1692
Strong circuit axiom      489 493
Strong component      115
Strong component of a digraph      16
Strong connectivity      34
Strong edge connectivity      34
Strong generating set      637
Strong generating set (SGS)      1517
Strong irregularity      1440
Strong map      509 510
Strong perfect graph conjecture      268
Strong product      1464 1466 1736
Strongly $K_r$-saturaled      1268
Strongly $\mathscr{NP}$-complete      1619
Strongly compact      2092
Strongly connected      115 119
Strongly connected complex      1856
Strongly Hamilton-connected digraph      68
Strongly Hamiltonian      80
Strongly inaccessible cardinal      2112
Strongly k-connected      34
Strongly k-edge-connected      34
Strongly polynomial algorithm      135 1583 1584 1663
Strongly reconstructible      1465
Strongly regular graph      684 750 1462 1501 1513
Strongly stable set      387 417
Stroock, D.      1742; see “Diaconis P.”
Stroock, D.A.      1559; see “Holley R.”
Structural formula      1959
Structural Ramsey theorem      1337 1377 1378
Structure of type $\Delta$      1377
STS      see “Steiner triple system”
Sturmfels, B.      882 887 890 2059 2063
Sturmfels, B.B.      888 889 894 1822 1843; J.”
Sturmftls, B.A.      520 603 1835 1837 1861 2066; A.”
Sturtevant, D.      1285 1286 1823 1853; J.”
Subadditive ergodic theorem      1997
Subadditive function      1937
Subadditive stochastic processes      1937
Subcartesian product      615
Subcritical phases      360
Subdirect product      1460
Subdivision      17 256 1859
Subgraph bipartite      1696
Subgraph bridge of      40
Subgraph chord of      40
Subgraph color-critical      254
Subgraph Eulcrian      1581
Subgraph excluded      1475
Subgraph forbidden      1268 2178
Subgraph induced      8
Subgraph induced forbidden      1254
Subgraph spanning      7
Subgraph unicychc      1550
Subgroup      1966
Subgroup lattice      1857
Subhypergraph      386 397
Sublattice      924 954
Submatroid      494
Submoduiar flow algorithm      575 577
Submodular Amction      485 501 502 510 521 566 1676
Submodular flows      573
Submodular junction minimization      568
Submodular polyhedra      571
Submodularity      497
Subscheme      766
Subset sums      991
Subset-sum problem      954 1562 1585 1618 1633 2030
Subsets ordered by inclusion      459
subspace      484 696
Subspace lattice      1501
Substituents      1965
Substituttonal isomers      1964
Subsynthons      1969
Subtraction      1043 1049
Subtraction games      2135
Subtraction of singularities      1153
Subtree disjointness problem      2011
Successive minimum      925 926
Successive with respect to $\mathcal K$      925
Successor cardinal      2112
Successor ordinal      2110
Succinct certificate      14
Sudan, M.      1592; see “Karger D.”
Sugihara, K.      1913 1919—1922
Sum of games      2124
Sum sets      983 991
Summation by parts      1078
Summation function      2014
Sumner, D.P.      1280
Sumner, D.P.A.      66; see “Oberly D.J.”
Sumner. D.      62 66; M.”
Sums of circuits      92 547
Sunflower      1296 1456
Sunflower theorem      2016
Sup-norm short vector problem      953
Superconcentrators      1754 1755 1758
Supercritical phases      360
Supermatroid      520 521
Supermodular function      570
Supersolvable      2067
Suppes, P.      460; see “Scott D.”
Support of a vector      603
Supporting hyperplane      1655
Suranyi, J.      266; see “Hajnal A.”
surface      1487—1489 1491 1493
Suspense      2149 2151
Suspension      1844
Sutherland, J.W.      836
Sutyok, M.      1418; see “Komlos J.”
Suzuki — Tits ovoid      659 661
Svenonius, L.      640
Svrakic, N.M.      1105 1160; V.”
Swart, G.      881
Swart, H.      80; see “Entringer R.C.”
Swiercz, S.      672 673 683; C.W.”
Swiercz, S.A.      701 2183; C.W.H.”
Swierczkowski, S.      1440
Swift, J.D.      704; see “Hall Jr.M.
Swinnerton-Dyer, H.P.F.      933 958
Switching class      1499
Sykes, M.F.      1936
Sylow subgroup      639
Sylvcster-Gallai theorem      812 813 1837
Sylvester, JJ.      812 823 1959 2173 2177
Sylvester’s problem      812 817
Symmetric convex body      924 926 930 931 935 937
Symmetric design (SBIBD)      695 698 1511
Symmetric exchange axiom      579
Symmetric function      1056 2168
Symmetric greedy algorithm      580
Symmetric group      2053
Symmetry codes      794
Symmetry permutations      1966
Symmetry point group      1965
Symplectic group      620
Symplectic polar space      663
SYNCHEM      1969 1970
Syndrome      777
SYNLMA      1970
Synthon      1969
Synthon stability      1969
System of distinct representatives (SDR)      185
System of imprimitivity      616
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå