Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Handbook of combinatorics (vol. 1)
Àâòîðû: Graham R.L., Grotschel M., Lovasz L.
Àííîòàöèÿ: Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
The 20 articles in Volume 1 deal with structures while the 24 articles in Volume 2 focus on aspects, tools, applications, and horizons.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Àëãåáðà /Êîìáèíàòîðèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1995
Êîëè÷åñòâî ñòðàíèö: 1120
Äîáàâëåíà â êàòàëîã: 10.03.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Out-of-kilter method 1581
Outcome 2123
Outdegree 15
Outerplanar graph 308
Output gate 2012
Oval 658 683
Overhagen, I. 950
Overlap graph 58
Overlapping bridges 58
Ovoid 675
Oxley, J.G. 491 501 505 S08 516 522 523 535 540 1931 2178
Oxley, J.G.A. 516; see “Brylawski T.H.”
Oxtoby, J.C. 1474
Ozanam, J. 2168
Ozawa, T. 1921
O’Brien, E.A. 1484; see “Celler F.”
O’Brien, R.C. 87
O’Keefe, E.S. 709
O’Nan, M.E. 631
O’Nan-Scott theorem 617 656
P-geometry 683
P-polynomial scheme 761
P-recursive sequences 1109
P-saturated 1268
p-vector 909
Pach, J. 854; see “Barany I.”
Pach, J.A. 836; see “Erdos P.”
Pach, J.B. 1236 1522 1721 1722 1725; P.”
Pach, J.C. 1578; see “Kotnlos J.”
Pach, J.D. 1357; see “Laimann D.”
Pach, J.E. 811; see “Moser W.O.J.”
Pachner, U. 1857
Pachner, U.A, 879; see “Ewald G.”
Pack, I.; see Avis, D. 837
Packing 80 142 404 776 934 1276
Packing constant 935
Packing density 935
Packing graphs 1276
Packing trees 1280
Padberg, M. 1573; see “Hofrman K.L.”
Padberg, M.W.A. 131 132 207 268 1571—1573 1658 1662 1667 1680 1681 1695 1696 1881 2188
Padberg, M.W.B. 1696; see “Balas E.”
Padberg, M.W.C. 1696; see “Crowder H.”
Padberg, M.W.D. 1573 1654 1696; M.”
Pairing theorem 1957 1972
Pairwise balanced design see “PBD”
Palasti, I. 820 822
Palasti, I.A. 818 821 823; Z.”
Paley graphs 1760 1761
Paley matrix 795
Paley, R.E.A.C. 730 753 2183
Palfy, P.P. 1516
Palfy, P.P.A. 1460 1516; L.”
Palfy, P.P.B. 1520; see “Babai L.”
Palka, Z. 370
Palmer, E. 1060; see “Harary F.”
Palmer, E.M. 354
Palmer, E.M.A. 1162 1195 1213; F.”
Panconnected graph 78
Pancyclic graph 24 25
Pancyclic oirlering 78
Pancyclic vertex 32
Pannwitz, E. 836
Papadimilricu, C.H.B. 1557 1888; D.S.”
Papadimitricu, C.H.A. 183 1659 1693 1696
Papadimitricu, C.H.C. 1662 1693; R.M.”
Papadimitricu, C.H.D. 1903 1904; A.W.J.”
Papernov, B.A. 163
Pappus configuration 813
Pappus theorem 652 653
Parallel algorithm 1642
Parallel class 705
Parallel computation 1637 1640
Parallel elements of a matroid 490 498
Parallelism 655 1544
Parallelotopes 853 858 921 944 945
Parameter sets 1360 1362
Parent 13
Paris, J. 1353
Paris, J.A. 1356; see “Kirby L.”
Paris, L. 2070
Parisi, O. 1947; see “Mezard M.”
Parity check 777
Parity function 1625 1626 1803 1806 2013 2016
Parity gates 2013
Parity of a walk 9
Parity polynomial-time hierarchy 1626
Parker, E.T. 697 2183
Parker, E.T.A. 705 707 2183.; R.C.”
Parker, R.A 622.; see “Conway J.H.”
Parsons, T.D. 60; see “Jackson B.”
Parsons, T.D.A. 1474; see “Marusic D.”
Part, J. 844 846 865
Parthasarathy, K.R. 268
Partial (sub)hypergraph 386
Partial geometry 684
Partial hypergraph 401 408
Partial k-coloring 49
Partial k-path partition 50
Partial l-design 1306
Partial linear space 668 696
Partial order 435
Partial representation (PR) 584
Partial transversal 186 500 501 2178
Partially balanced incomplete block design see “PBIBD”
Partially ordered sets see “Posets”
Partite construction 1381 1391
Partite lemma 1390
Partite system 1389
Partition 80 426 1037 1056 1068 1727 2168 2172
Partition (vertex partition) 81
Partition function 1927 1930 1941 1944 1949
Partition lattice 444 446
Partition of a graph 43 1830
Partition of integers 2167
Partition regular 1358
Partition-generating function 2168
Partitionable 561
Partitions with bounded part sizes 1164
Partizan games 2127 2145 2150 2158
Pascal, B. 2166 2167
Pascal’s triangle 2166
Pasini, A. 683; see “Cameron P.J.”
Pasini, A.A. 683; see “Del Fra A.”
Pasquier, G. 791
Patashnik, O. 1071 1073 1090 1131 1132 1212; R.L.”
Path 9 114 391 400 1472
Path (in a hypergraph) 387
Path compression 2025 2026
Path decomposition 86
Path double cover 93
Path partition of a graph 43
Path system 26
Path width 337
Path-tough graph 53
Patterson, S.J. 958
Paturi, R. 1765
Paul, W. 1629; see Hopcroft J.
Paul, W.J. 1629 1754
Paving 498
Paving matroid 499
Pavlov, A.I. 1126
Payan, C. 416; see “Jaeger F.”
Payan, C.A. 49; see “Laborde J.M.”
Payne, S.E. 676
PBD (pairwise balanced design) 696
PBD-closed set 707
PBIBD (partially balanced incomplete block design) 706
Peano arithmetic 1352
Peck, G.W. 474 475
Pedoe, D. 889; see “Hodge W.V.D.”
Peled, U.N. 1696; see “Hammer P.L.”
Pellegrino, G. 661
Peltesohn, R. 709
Pen-strokes 2176
Penn, M. 165; see “Korach E.”
Penrice, S. 443; see “Kierstead H.”
Penrice, S.G. 1209
Penttila, T. 656
Percolation 1932
Percolation methods 1210
Percolation theory 1933
Percus, J.K. 1941 1944
Peresy, N. 666
Perfect 2-matching 219 264
Perfect and extreme forms 958
Perfect codes 717 778 802 804
Perfect graphs 182 265—267 269 270 1546 1591 1687
Perfect matching 46 181 410 1579 1588 1590 1627 1628 2016 2052 2186
Perfect matching polytope 206 1666 1680
Perfect numbers 1O08
Perfect set 760
Perfect, H. 438
Perfect, H.A. 522; see “Bryant V.”
Perfectly 1-factorable 80
Perfeel graph theorem 267 270 1687
Performance absolute 1633 1634
Performance asymptotic 1633 1634
Performance guarantee 244 246 1547 1634
Performance ratio 1546 1547
Peripheral circuits 58 152
Perko, A. 717; see “Tietavainen A.”
Perles, M.A. 438
Perlwitz, M.D. 1990; see “Waterman M.S.”
Perm, C. 215; see “Murty K.G.”
Permanents 221 1208 2170
Permanents van der Waerdcn’s conjecture 1456
Permutation 1024 1027 1050
Permutation character 631
Permutation digraph 1047
Permutation group 614 1516 1963 2053 2054
Permutation matrix 187
Permutation oligomorphic 1509
Permutation rank 3 1477
Permutation regular 1467
Permutation t-homogeneous 1468
Permutation t-transitive 1468
Permutational isomerization reaction 1965
Permutational isomers 1965
Permutations with distinct cycle length 1127 1171
Permutations with restricted position 1043
Permutations without long increasing subsequences 1155
Perrin, D. 1031; see “Berstel J.”
Perron, O. 1140
PERT 2187
Petcrsen, J. 51 89 188 260
Petersen graph 51 54 62—64 75 89 92 189 211 295 296 377 515 548 701 750 752 760 1452 1472
Petersen theorem 188
Petersen, B. 1922
Petersen, K. 1438 1439
Peterson, B.B. 850
Peterson, Ch. 697
Peterson, G.; see Daniels, D. 1997
Peterson, W.W. 806
Petrenjuk, A.Ya. 696
Petrovskil, I.B.. 1761; see “Olemik O.A.”
Pfaffian 222 669 1590 1732 1944
Pfafian orientation 223 224
Pfeiffer, F. 162 164; M.”
PG 696
Phase transition 358
Phillips, D.T. 125
Phillips, R. 1385 1482 1754 1756—1758; A.”
Physical sciences 1958
Pick theorem 947
Pickert, G. 652
Pidgeonhole principle 1334
Piecewise linear 1802 2184;
Piepmeyer, L. 839 848; H.”
Pierce, T.H. 1969
Piff, M.J. 507
Pinsker, M. 1755
Pinson, E. 1906; see “Cariier J.”
Pintz, J.A. 991
Pintz, J.B. 408; see “Ajtai M.”
Pintz, J.C. 1350 1438; J.”
Pintz, T. 861; see “Komlos J.”
Piper, F. 1710 1729; D.”
Piper, F.C. 669; see “Hughes D.R”
Pippenger, N. 410 425 1755
Pippenger, N.A. 1629; see “Paul W.J.”
Piras, F; see “Cerlienco, L” 1131
Pisanski, T. 325
Pittel, B. 369; see “Flajolet P.”
Pittel, B.A. 361; see “Janson S.”
Pittel, B.B. 360; see “Luczak T.”
PL (piecewise linear) 1855
PL (piecewise linear) balls 1855 1859
PL (piecewise linear) map 1860
PL (piecewise linear) sphere 886 1855 1857 1859
PL (piecewise linear) topology 1859
Plambeck, T. 2136 2158; A.”
Planar 291 296 494 532 538 540 546 883 1492 1494
Planar 3-colorability 246
Planar dual 55
Planar embedding 55 1557
Planar graph 55 153 237 259 277 306 494 1511 1564 2078
Planar poset 468
Planar space 697
Planar ternary ring 668
Planarity 360 365 493
Plane cubic curve 2180
Plane graph 55 306
Plane of symmetry 884
Plane partition 1057 2174
Plane triangulation 259 260
Planes and hyperpianes 826
Planted plane tree 1140
Plass, M.F. 1888; see “Knuth D.E.”
Platonic graphs 5
Platonic solids 897
PlattC.R. 312
Pless symmetry codes 703
Pless, V. 703 727 794 802 806
Plotkin bound 781
Plouffe, S. 1211; see Bergeron F.
Plouffe, S.A. 1076; see Sloane N.J.A.
Plucker coordinates 2062
Plucker-Grassmann relations 889
Plummer, M.D. 62; see “Holton D.A.”
Plummer, M.D.A. 47 66 125 127 147 182—184 190 194—199 206 209 212 216 220 221 223 224 226 263 383 397 1471 1566 1667 2051 2186 2188; L.”
Poincare series 2058 2065
Poincare, H. 896
Poinsot, L. 2176
Point graph 684
Point-set duality 501
Pointed polyhedron 877 1655
POINTER 2019 2020
Points-lines-planes conjecture 832
poisson 366
Poisson approximations 1167
Poisson convergent 367
Poisson summation formula 1090
Polansky, O.E. 1974; see “Gutman I.”
Polar (dual) polytope 879
Polar body 926
Polar lattice 925
Polar space 663
Polarity 663 671 695 903
Poljak, S. 1555 1584
Ðåêëàìà