Авторизация
Поиск по указателям
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Handbook of combinatorics (vol. 1)
Авторы: Graham R.L., Grotschel M., Lovasz L.
Аннотация: Combinatorics research, the branch of mathematics that deals with the study of discrete, usually finite, structures, covers a wide range of problems not only in mathematics but also in the biological sciences, engineering, and computer science. The Handbook of Combinatorics brings together almost every aspect of this enormous field and is destined to become a classic. Ronald L. Graham, Martin Grotschel, and Laszlo Lovasz, three of the world's leading combinatorialists, have compiled a selection of articles that cover combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
The 20 articles in Volume 1 deal with structures while the 24 articles in Volume 2 focus on aspects, tools, applications, and horizons.
Язык:
Рубрика: Математика /Алгебра /Комбинаторика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1995
Количество страниц: 1120
Добавлена в каталог: 10.03.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Poljak, S.A. 60; see “Chrobak M.”
Poljak, S.B. 1592; see “Delorme C.”
Poljak, S.C. 169 170; T.”
Poljak, S.D. 1592; see “Mohar B.”
Pollack, R. 858
Pollack, R.A. 818 830 832 834 857 865 894 1764 1765; J.E.”
Pollak, H.O.; see “Graham, R. 1737”
Polya theorem 1058
Polya — Redfield enumeration 1070
Polya,G. 1058 1104 1461 1960 1962 2172 2177
Polya’s enumeration theorem 1957 1962 1965
Polya’s method 893
Polycyclic aromatic hydrocarbons 1961 1973
Polygon 10 387 395 422 947
Polygon matroid 486 488
Polygonal regions 816
Polyhedra 395 401 877 1654
Polyhedral combinatorics 1567 2188
Polyhedral complex 877 878 1859
Polyhedral cone 2047
Polyhedral isomerizations 1960
Polyhexes 1973
Polymairoid greedy algorithm (PGA) 567
Polymatroid 566 1546
Polymatroid function 567
Polymatroid intersection 569 1676
Polymatroid matching 578
Polynomial algorithm 546 1583
Polynomial approximation scheme 1633 1634
Polynomial class 2188
Polynomial expected time 1636
Polynomial graph 252
Polynomial growth 1479
Polynomial local search problem 1557
Polynomial randomized 223
Polynomial ring 2057
Polynomial space 1714
Polynomial time 1545 1609 1610 1631 1632
Polynomial-time algorithm 13 245—247 953 957 1612 1614 1615 1618 1637
Polynomial-time hierarchy 1624—1626 1628 1630
Polynomial-time randomized 1612
Polynomial-time reducibility 1615 1625 1629
Polynomial-time Turing machine 1628 1630
Polynomially solvable 1662
Polyominoes 401 1036 1104 1938
Polytopal 878 883 888
Polytopal digraph 906
Polytopal readability 882
Polytopal sphere 887
Polytope 59 153 392 877 1654 1764 1765 1777 1778
Polytope algebra 899 1841
Polytope pair 903
Pomerance, C. 994 997 1006 1010—1013 1372
Pomerance, C.A. 1015; see “Afford W.R.”
Pomerance, C.B. 1008; see Cheng F.Y.
Pomerance, C.C. 991 1012; P.”
Pommersheim, J.E. 947
Ponomarev, V.A. 1501; see “Gel’tand I.M.”
Pont, J.C. 2176
Poonen, B. 1157; see “Odlyzko A.M.”
Posa, L. 26 38 45 70 71 1262 1337
Posa, L.A. 81 87 336 1238 1375; P.”
Posa’s lemma 70
Posets (partially ordered sets) 435 1766 1779 1842 1843
Posets of subgroups 1857
Positive definite quadratic form 927
Positive definite symmetric matrices 927
Positive linearly dependent subset 1835
Pospichal, J. 1969
Postman tour 84
Postnikov, A.G. 1125
Potential 133 577
Potential energy hypersurface 1960
Potts model 1931
Power of a graph 52
Power structure 618
PR see “Partial representation”
Praeger, C.E. 629 1469 1505
Praeger, C.E.A. 628 1452 1506; P.J.
Praeger, C.E.B. 619 1502 1505; M.W.
Praeger, C.E.C. 1483; see “Neumann P.M.”
PRAM 1641 1642
Pratt, V.R. 2016
Prcparata codes 797 803
Precedes 9
Pregeometry 498
Prehomogeneous of f 2094
Preissmann, M. 93
Premel-Steger theorem 1255
Presentation 1519
Pressing down 2114
Pricing 1573
Priday, C.J. 710
Prim, R.C. 139
Primal feasible 605
Primal-dual iteration 1659
Primal-dual method 1659
Primality 1620
Primality testing 1611
Prime 502 1028
Prime number theorem 1079
primitive 789 932 944
Primitive group 616 1515 2054
Primitive parallelotope 945
Primitive permutation group 2053 2056
Primitive sets 992
Prim’s algorithm 1550 2024
Principal character 630
Principal monotone property 1254
Pringsheim theorem 1151
Prins, G. 276; see “Harary F.”
prism 47
Pritchard, P.A. 1000
Private key 2030
Privman, V. 1105 1160
Probabilistic analysis of algorithms 1635
Probabilistic graph theory 2179
Probabilistic method 1475
Probability generating function 1741
Probleme des menage s 1044
Probleme des rencontres 1067 1209 2171
Procesi, C. 2059 2060; C.”
Proctor, R. 1779 1840
Prodinger, H.; see Flajolet, P. 1194
Product action 618
Product of hypergraphs 386 419
Product sets 997
Profile 884
Projeclively equivalent 595
Projected lattice 928
Projecting 496
Projective code 778
Projective geometry 649
Projective of order 10 2183
Projective plane 261 318 411 546 650 667 696 804 1488 1499 1775 2181
Projective space 498 504 514
Projective special linear group 620
Projective transformation 903
Projective variety 1839 2057
Promel, H.J.A. 77 1267; A.”
Promel, H.J.B. 1251; see “Kolaitis P.H.”
Proper bridge 40
Proper coloring 48 388
Proper edge coloring 51 417
Proper face coloring 56
Proper part 1824 1844
Proper rotations 1967
Property 1788
Property of graphs 1253 1284
Property of subsets 1284
Proskurowski, A. 340; see “Amborg S.”
Protocol 2006 2017
Proulx, V.K. 1492
Provan, J.S. 1854 1857
Prtimel, H.J. 1255 1333 1367 1368 1379 1381 1389 1393
Pruesse, G. 27
Prufer, H. 1024
Pseudo-geometric graph 684
Pseudo-line arrangements 818
Pseudo-lines 817 819 821
Pseudo-manifold 880 883 902
Pseudo-node 191
Pseudo-polynomial algorithm 1618
Pseudo-primes 1014
Pseudo-random graphs 1758 1760
Pseudo-random number 2027 2032
Pseudo-random number generation 2005
Pseudo-random number generator 2033
Pseudo-sphere 1836
Public key 2030 2032
Public-key crypto-system 2029 2030 2032
Pudaite, P. 1145; see “Erdos P.”
Pudlak, P. 444
Pudlak, P.A. 1351
Pulleyblank, W.R. 209 210 214 219 220 1654
Pulleyblank, W.R.A. 224; see “Barahona F.”
Pulleyblank, W.R.B. 219 220; J.-M.”
Pulleyblank, W.R.C. 1693; see “Boyd S.C.”
Pulleyblank, W.R.D. 212 214; W.”
Pulleyblank, W.R.E. 196 220 1696; G.”
Pulleyblank, W.R.F. 210; see “Edmonds J.”
Pulleyblank, W.R.G. 215; see “Gamble A.B.”
Pulleyblank, W.R.H. 1673; see “Giles F.R.”
Pulleyblank, W.R.K. 219; see “Grimmett G.”
Pulleyblank, W.R.L. 1696; see “Grotschel M.”
Pullman, N.J. 87; see “Alspach B.”
Pultr, A. 1499
Pultr, A.A. 1500; see “Babai L.”
Pultr, A.B. 1461 1511 1514; Z.”
Pultr, A.C. 1461; see “Vopenka P.”
Puncture code 717
Purdy conjectures 815
Purdy, C. 844
Purdy, G.A. 815 817 821 822 825 832 844 845 862
Purdy, G.B. 836; see “Neaderhouser C.C.”
Purdy, G.C. 825 845; G.R.”
Purdy, G.D. 815 824 840 844 845 862; P.”
Purdy, G.E. 844; see “Purdy C.”
Pure complex 877 1842 1843 1856
Pyber theorem 1238
Pyber, L. 84 627 628 1238 1521 1771 2057
q-analog generating functions 1099
q-binomial coefficients 1111
q-binomial theorem 1038
Qi, L. 580
Quadratic form 663 927 958
Quadratic inequality 1590
Quadratic residue 2031 2032
Quadratic residue code 718 793
Quadratic residuosily problem 2031
Quadrilateral 10
Quadtrees 1205
Quantifier elimination 1508
Quasi-crystals 945 958
Quasi-linear recurrences 1144
Quasi-random graphs 376
Quasi-random properties 376 1351
Quasi-residual design 702
Quasi-symmetric design 70] 751
Quattrocchi, P.; see Heise, W. 805
Qucyranne, M. 569
Quermassintegral 946 950
Quillen, D. 1845 1849 1851 1852 1856 1857
Quinn, F. 1316
Quintas, L.V.; see Kennedy, J.W 308 1958 2178
Quisquattr, J.-J. 1485
Quotient 510
Quotient graph 1461
Quotient scheme 765
Quotient space 1844
r-complete 1299
r-cut 1566 1674
r-graph 387
r-OPT heuristic 1554
r-partite hypergraph 387 414 415
r-partitions of length 2093
R-rank 585
r-s-flow polytope 1669
r-s-flow under c 1669
r-shift-graph 2107
Rabin, M.O. 1612 2030
Rabin, M.O.A. 1629; see “Fischer M.J.”
Rabinovitch, I. 465
Rackoff, C. 1638; see “Aleliunas R.”
Rackoff, C.A. 1630 2034; S.”
Rackoff, C.W. 1741; see “Aleliunas B.”
Radcmacher convergent series representation 1068
Rademacher, H. 1124
Rademacher, H.A. 878 882 885; E.
Radin, C. 958
Rado graph 1463 1474 1508
Rado theorem 851
Rado, R. 474 483 503 506 561 851 1338 1359 1367 1368 1865 2179 2185
Rado, R.A. 764 1296 1298 1336 1346 1367 1389 2093 2097 2102 2187; P.
Rado-Dcuber sets 1357
Rado-Hall theorem 503
Radofc selection theorem 2180
Radon partitions 858
Radon theorem 834 849
Rado’s selection lemma 2091
Radziszowski, S.P. 1347
Radziszowski, S.P.A. 1347; see “McKay B.D.”
Radziszowski, St. 702 955; D.L.”
Raghavan, P. 1574
Raghunathan, M.S. 1479
Rahavan, P. 1744; see “Chandra A.K.”
Rai, A. 161; see “Even S.”
Rajan, A. 590
Rajan, A.A. 536; see “Bixby R.E.”
RAM (random access machine) 1604 1605 1607 1608 1610
Ramachandran, V. 1642; see “Karp R.M.”
Ramachandran, V.A. 1458; see “Miller G.L.”
Ramanujan, S.A. 2174; see “Hardy G.H.”
Ramaraijan, S. 1757 2174
Ramensi, D. 1968; see “Bonchev D.”
Rammal, R. 1947; see “Bieche I.”
Ramsey canonical 1367
Ramsey canonical Euclidean 1371
Ramsey cardinals 2102
Ramsey classes 1372 1374
Ramsey classes of structures 13 80
Ramsey dual 1370
Ramsey Euclidean 860
Ramsey finite 1333
Ramsey function 1787 1794 1799 1800
Ramsey generalized 1347
Ramsey graph 384 418 419 1464
Ramsey infinite 1351 1352
Ramsey number 406 424 1334 1346 1761
Ramsey problem 1374
Ramsey property 375 1374
Ramsey structural 1337 1377 1378
Ramsey theorem 662 1335 1788 1806 2093
Ramsey theory 2184
Ramsey topological dual 1370
Ramsey — Turan problem 1383
Ramsey, F.P. 263 851 1333 1336 1352 1408 2093 2184
Ramsey, L.T. 1006
Ramsey-type full 1357
Ramsey-type theorems 1357
Реклама