|
|
Результат поиска |
Поиск книг, содержащих: Four-momentum
Книга | Страницы для поиска | Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | see «under | Hand L.N., Finch J.D. — Analytical Mechanics | 527 | Torretti R. — Relativity and Geometry | 114 | Eschrig H. — The Fundamentals of Density Functional Theory | 167 | Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Special relativisitic mechanics” | Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 328 | Kleppner D., Kolenkow R. — An introduction to mechanics | 527 | Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 26 f. | Ludvigsen M. — General relativity. A geometric approach | 41 | Dutra S.M. — Cavity quantum electrodynamics | 92 | Griffits D. — Introduction to elementary particles | 89 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | (see also “Poincare group”, “Lie algebra”, “Spectral condition”) | Desloge E.A. — Classical Mechanics. Volume 1 | 897 | D'Inverno R. — Introducing Einstein's Relatvity | 118 | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 72 | Woodhouse N.M.J. — Geometric quantization | 114 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 249—250 | Landau L.D., Lifshitz E.M. — The classical theory of fields | 29 | Povh B., Rith K., Scholz C., Zetsche F. — Particles and nuclei. An introduction to the Physical Concepts | 53, 54 | Greiner W., Reinhardt J. — Field quantization | 43, 119 | Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 312 | Schutz B.F. — A first course in general relativity | 52, 57, 94, 97, 185 | Anderson J.L. — Principles of Relativity Physics | 196 | Greiner W. — Relativistic quantum mechanics. Wave equations | 2 | Adams S. — Relativity: An Introduction to Space-Time Physics | 159—162, 174 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 241—250 | Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 37 | Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 64 |
|
|