|
|
Результат поиска |
Поиск книг, содержащих: Spin structure
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 256 | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 114 | Berger M. — A Panoramic View of Riemannian Geometry | 695 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 345 | Gilkey P.B., Leahy J.V., Park J. — Spinors, Spectral Geometry, and Riemannian Submersions | 46, 106, 121 | Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 6, 76 | Connes A. — Noncommutative geometry | II.6.$\gamma$ | Melrose R. — The Atiyah-Singer index theorem (part 3) | 86 | Joyce D.D. — Compact Manifolds with Special Holonomy | 65 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 149, 212, 213, 215, 216, 235, 237, 287, 308, 311, 445 | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 381, 408, 421, 487, 492, 505 | Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 62 | Naber G.L. — Topology, Geometry and Gauge Fields | 410 | Bleecker D. — Gauge Theory and Variational Principles | 81 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 136, 151 | Hatfield B. — Quantum field theory of point particles and strings | 719 | Adler S.L. — Quantum theory as emergent phenomenon | 56 | Nash C. — Differential Topology and Quantum Field Theory | 113 | Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 84, 89—93, 121—126 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 415 | Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 181 | Moore J.D. — Lectures on Seiberg-Witten Invariants | 43 | Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces | 85 | Joyce D.D. — Compact manifolds with special holonomy | 65 | Frankel T. — The geometry of physics: an introduction | 515—518 | Naber G.L. — Topology, Geometry and Gauge Fields | 410 | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 122—124, 127, 130—132 | Frankel T. — The geometry of physics: An introduction | 515—518 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 62 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 415 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 104, 144 |
|
|