Книга | Страницы для поиска |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 226.D |
Olver P.J. — Equivalence, Invariants and Symmetry | 98, 101, 102, 333 |
Schenck H. — Computational algebraic geometry | 80, 112, 116 |
Dickson L.E. — Algebraic invariants | 12, 15, 66 |
Dolgachev I. — Lectures on Invariant Theory | 66 |
Casey J. — A treatise on the analytical geometry | 462, 477 |
Lischner R. — C++ in a Nutshell | |
Marchisotto E.A., Smith J.T. — Legacy of Mario Pieri in Geometry and Arithmetic | 200, 250 |
Hida H., Fulton W. (Ed) — Modular Forms and Galois Cohomology | 155 |
Hatcher A. — Algebraic Topology | 163 |
Lectures on invariant theory | 66 |
Sylvester J.J. — The Collected Mathematical Papers, Volume II | i 200, 581 |
Hunt B. — Geometry of Some Special Arithmetic Quotients | 294 |
Parshin A.N., Shafarevich I.R. — Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory | 181 |
Masujima M. — Path integral quantization and stochastic quantization | 57 |
Barr M., Wells C. — Toposes, Triples and Theories | 12 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 73 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 926 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 754 |
Grosshans F.D. — Algebraic Homogeneous Spaces and Invariant Theory | 56, 58 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 926 |
Ito K. — Encyclopedic Dictionary of Mathematics | 226.D |
Menzel D.H. — Mathematical Physics | 119 |
Dirac P.A.M. — The Principles of Quantum Mechanics | 254 |
Veblen O., Young J.W. — Projective Geometry. Vol 1 | 257 |
Halmos P.R. — Finite-Dimensional Vector Spaces | 83 |
Stewart J. — Advanced general relativity | 10 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 48 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 926 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 44 |
Morgan F. — Riemannian geometry, a beginners guide | 40 |
Mercier A. — Analytical and canonical formalism in physics | 36, 36, 55, 60, 69, 86 |
Dirac P.A.M. — The Principles of Quantum Mechanics, Vol. 27 | 254 |
Janich K. — Topology | 69 |
Hazewinkel M. — Handbook of Algebra (part 2) | 395 |
Kashiwara M., Schapira P. — Sheaves On Manifolds | 25 |
Jerry Shurman — Geometry of the Quintic | 56 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 26, 28, 31, 34 |
Baker H.F. — Abel's Theorem and the Allied Theory Including The Theory of the Theta Functions | see Invariant. |
Mac Lane S., Birkhoff G.D. — Algebra | 147, 504 |
Bell E.T. — The Development of Mathematics | 322 |
Hermann R. — Differential geometry and the calculus of variations | 98 |
Dirac P.A.M. — The Principles of Quantum Mechanics | 254 |
Littlewood D.E. — The Skeleton Key of Mathematics | 95 |
Carroll R.W. — Mathematical physics | 287, 296 |
Friedlander S.(ed.), Serre D.(ed.) — Handbook of Mathematical Fluid Dynamics | 505 |
Bell E.T. — Men of mathematics. Volume 2 | 435 |
Dickson L.E. — History of the theory of numbers. Volume 3: quadratic and higher forms | 33, 293—301 |
Bell E.T. — Mathematics: Queen and Servant of Science | 214 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 48 |
Kline M. — Mathematical thought from ancient to modern times | 926 |
Goursat E. — A course in mathematical analysis. Volume 2, part 2: Differential equations | 80, Note 2 |