Авторизация
Поиск по указателям
Baker H.F. — Abel's Theorem and the Allied Theory Including The Theory of the Theta Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Abel's Theorem and the Allied Theory Including The Theory of the Theta Functions
Автор: Baker H.F.
Аннотация: Classical algebraic geometry, inseparably connected with the names of Abel, Riemann, Weierstrass, Poincaré, Clebsch, Jacobi and other outstanding mathematicians of the last century, was mainly an analytical theory. In our century the methods and ideas of topology, commutative algebra and Grothendieck's schemes enriched it and seemed to have replaced once and forever the somewhat naive language of classical algebraic geometry. This classic book, written in 1897, covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today, and some of the most exciting ideas from theoretical physics draw on work presented here.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1897
Количество страниц: 684
Добавлена в каталог: 25.03.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Function 292 324 333 516
Abel 90 173 205 206 207ff. 221 225ff. 231 243 246 377 397 657
Abelian functions 236 600
Abelian integrals see Integrals;
Abelian matrix 669
Abel’s Abel’s proof of 219 220
Abel’s converse of 222
Abel’s differential equations 225 ff.
Abel’s for curves in space 231
Abel’s for factorial functions 397
Abel’s for radical functions 377
Abel’s number of independent equations given by 222ff.
Abel’s proof of 213
Abel’s statement of 210 214
Abel’s theorem 207 ff.
Addition equation for hyperelliptie theta functions, deduced algebraically 331 ff.
Addition for theta functions in general 457 461 472 476 481 513 521
Adjoint expression of rational function by 127 see Integrals Sets Lots.
Adjoint number of terms in 128
Adjoint polynomial (or curve), definition of 121
Appell 200 392
Argument and parameter, interchange of 16 185 187 189 191 194 206
Associated, associated system of factorial functions 397
Associated, Forms associated with fundamental integral functions 62
Associated, integrals of second kind associated with integrals of the first kind 193 195 198 532
Automorphic connection with factorial functions 439ff.
Automorphic functions, simple ease of 352 ff.
Azygetic characteristics 487 497
Azygetic transformation of 542 547
Bacharach 141
Bacharaeh’s modification of Cayley’s theorem for plane curves 141
Bachmann 666
Bam 57 112
Benoist 153 156 222 647
Bertini 137
Biermann 663
Biquadratic see Gopel.
Birational transformation of a Riemann surface , by -polynomials 142 152
Birational transformation of a Riemann surface , does not affect the theory 3 7
Birational transformation of a Riemann surface , for hyperelliptie surface 152 85
Birational transformation of a Riemann surface , number of invariants in 9 144 148 150
Birational transformation of a Riemann surface , of plane curves 11
Birational transformation of a Riemann surface , of surface into itself 658 see Invariants and
Birational transformation of a Riemann surface , when , or 153
Bitangents of a plane curve 381 390 644 646
Bobek 647
Bolza 177 294 296 815 329 842 436 663
Borahardt 340 342 468
Bouquet 90
Branch places see Places.
Braunmiihl 486 521
Brill 12 29 134 137 145 149 436 647
Brioschi 296 311 342 448 516 526 668 666
Briot 90
Broch 221
Burkhardt 43 429 436 555 623 663
Burnside 345 373 663
Canonical curve discussed by Klein 159
Canonical equation for a Riemann surface 83 91 103 143 145 152
Canonical integral of the third kind 168 185 189 194 195
Cantor 239
Caspary 474 486 525
Castelnuovo 647 665
Cauchy 600
Cayley 12 137 141 145 165 168 198 222 230 283 296 340 342 374 387 459 540 646 647 650 664 666 668
Cayley’s theorem for plane curves 141
Characteristics, expression of any half-integer characteristic by means of a fundamental system 301 500 502
Characteristics, G pel groups and systems of 489 490 494 ff.
Characteristics, general theory of 486 ff.
Characteristics, of a theta function, number of odd and even 251
Characteristics, of radical functions 380 564
Characteristics, period characteristics and theta characteristics 543 564
Characteristics, syzygetic, azygetic 487
Characteristics, tables of half-integer characteristics for , 303 305
Characteristics, transformation of 536 542 547 564 568
Characteristics, Weirstrass’s number notation for 570 887 303
ChasUs 187 647
Christoffel 666
Clebsch 131 142 153 156 165 168 183 222 241 244 288 295 392 423 448 544 545 556 578 623 647
Coincidences of a correspondence 645
Column and row see Matrices.
Column of periods 571
Complex multiplication of theta functions 629 ff. 639 660
Composition of transformations of theta functions 551
Condition of dimensions 49
Conformal representation 343 356 372
Congruence, meanings of sign of 236 256 261 264 487
Constants, in any transformation of theta functions 620 622
Constants, in linear transformation of theta functions 555 559
Constants, invariant in rational transformation 9 88 144 148 150
Contact curves see Curves and
Convergence of an automorphic series 350
Convergence of transformed theta function 538
Coresidual sets of places on a Riemann surface 135 ff. 213
Coresidual sets of places on a Riemann surface, are equivalent sets 136
Coresidual sets of places on a Riemann surface, enter in statement of Abel’s theorem 210
Correspondence of Riemann surfaces 3 ff. 81 639 642 647 648 649 654 662
Covariant see Invariant.
Cubic surface associated with a plane quartic curve 382 389
Curves, Abel’s theorem for 281
Curves, adjoint curves 121 129
Curves, as alternative interpretation of fundamental algebraic equation 11
Curves, bitangents of a plane quartic curve 384
Curves, Cayley’s theorem for 141
Curves, contact curves 381
Curves, coresidual and equivalent sets upon 134 136
Curves, correspondence of see Correspondence;
Curves, curves in space 157 ff. 166 664
Curves, general form of Pl cker’s equations for 124
Curves, generalisation 40
Curves, inflexions and bitangents in connection with theory of correspondence 644 646
Curves, inflexions of a plane quartic in connection with the gap theorem 36
Curves, special sets upon 146 ff.
Curves, transformation of see Birational Invariants and
Curves, Weierstrass’s canonical equation for 93 103
Cusps 11 114
Darboux 666
De Jonquieres 137
Dedekind 57
Deficiency of a Riemann surface 7 55 60
Defining relation for theta functions 443
Definition equation of theta functions of general order 448
Degenerate Abelian integrals 657
Dependence of the poles of a rational function 27
Dersch 647
Differential equations of inversion problem 225 ff.
Differential of theta functions see Addenda
Differentials of integrals of first kind 25 62 67 127 169
Dimension of an integral function 48 ff. 55
Dimension, condition of dimensions 49
Dini 239
Dirichlet 246 600
Discriminant of a fundamental set of integral functions 74 101 124
Dissection of the Riemann surface 26 529 253 257 569 297 550 560
Double points of a Riemann surface (or curve) 1 2 3 11 114
Double tangents of a plane curve 644 646
Eisenstein 246 674
Elementary integrals see Integrals.
Epstein 342
Equivalence, meanings of sign of 236 256 261 264 487
Equivalent sets of places on a Riemann surface 134 ff. 136 213
Essential factor of the discriminant 60 74 124
Euler 159
Existence references 14
Existence theorems, algebraically deducible 78
Expression of any rational function 77 176 212
Expression of fundamental integral functions 105 ff.
Expression of half-integer characteristic by means of a fundamental system 301 487 500 502
Factorial functions 392 ff.
Factorial functions, connection with automorphic functions 439 ff.
Factorial functions, definition of 396
Factorial functions, expressed by factorial integrals 403
Factorial functions, expressed by fundamental factorial function 413
Factorial functions, used to express theta functions 423 426
Factorial functions, which are everywhere finite 399
Factorial functions, with fewest poles 406
Factorial integrals 898
Factorial integrals, expression of factorial function by means of that Factorial integrals, integral 412
Factorial integrals, fundamental, having only poles 408
Factorial integrals, simplified form of that integral 411
Factorial integrals, which are everywhere finite 399
Fagnano 638
Forsyth 2 3 7 9 10 13 14 15 16 21 24 25 29 39 90 114 122 123 144 150 198 212 233 296 327 373 395 421 439 441 442 445 459 531 577 578
Frahm 383
Fricke 639 648
Frobenius 342 387 447 474 486 491 500 516 517 521 522 525 586 588 589 598 628 629 630 632 633 666 668 674 676
Frost 389
Fuchs 206 566
Function, function 292 324 338 516
Function, function 287 292 320
Function, automorphic 352 ff. 439 ff.
Function, factorial see Factorial;
Function, integral see Rational and
Function, prime 172 205 360 363 428
Function, radical 374 390 565
Function, rational see Rational;
Function, theta see Theta functions and
Fundamental algebraical equation 10 113
Fundamental rational function, Weierstrass’s 171 175 177 178 ff. 182
Fundamental set for the expression of rational integral functions 48 ff. 55 56 57 105 ff.
Fundamental system of theta characteristics 301 487 500 502
G pel biquadratic relation 338 340 465 468
G pel group and system see Characteristics.
G nther 174 189 200
Gap theorem 32 34 93 174
Gasorati 579
Gauss 559 600 674
Geiser 383
Geometrical investigations 113 see Curves.
Gopel 246 338 339
Gordan 131 142 168 183 241 244 255 288 295 892 423 448 544 545 556 578 623
Goursat 663
Grade, of a polynomial 120
Grassman 137
Greenhill 639
Group, Gopel see Characteristics.
Halphen 124 165 364 370 421 473 474 639 665
Hamburger 2
Hancock 296 326
Harkness 2 10 14 15 16 21 24 25 79 101 124 239 342
Harnack 222
Hensel 57 64 78 118
Hensel’s determination of fundamental integral functions 105 ff.
hermite 238 246 448 452 538 577 600 615 632 689 663 666 674
Hettner 177 654
hilbert 665
Homogeneous variables 118 441
Homographic behaviour of differentials of integrals of first kind 26
Humbert 222 255 340 486
Hurwitz 41 392 689 648 651 653 654
Hyperelliptie surfaces 80 ff. 152 158 373
Independence of the theta functions with half-integer characteristics 446 447
Independence of the poles of a rational function 27
Index at the infinite place of Weierstrass’s canonical surface 129
Index of a place on a Riemann surface 122 123 124
Infinitesimal on a Riemann surface 1 2 3
Infinitesimal periods 238 573
Infinities of rational function 27 ff.
Infinity, the places at infinity on a Riemann surface, algebraic treatment of 118
Inflexions of a plane curve 36 40 646
Integral functions see Rational and Transcendental.
Integrals, algebraic expression of 65 ff. 127 131 163 185 189 194
Integrals, all derivable from integral of third kind 22
Integrals, degenerate 657
Integrals, factorial see Factorial ;
Integrals, formulae connecting with logarithmic differential coeffcients of theta functions 289 290 320
Integrals, hyperelliptie 195
Integrals, Riemann’s, normal elementary 15
Interchange of argument and parameter 16 185 187 189 191 194 206
Interchange of period loops see Transformation.
Invariants in birational transformation, for transformation of the Invariants in birational transformation, dependent variable 74 124
Invariants in birational transformation, the moduli 9 144 148 150
Invariants in birational transformation, the -places 38 653
Invariants in birational transformation, the contact - polynomials 281 427
Invariants in birational transformation, the number 7
Invariants in birational transformation, the ratios of -poly- nomials 26 153
Inversion theorem, by radical functions 390
Inversion theorem, in the hyperelliptic ease 317 324
Inversion theorem, Jacobi’s 285 ff. 270
Inversion theorem, solution of 239 242 244 275
J rgensen 221
jacobi 165 206 221 230 235 237 246 360 577 600 639 657
Jacobian functions, their expression by theta functions 588 594
Jacobian functions, their periods, are generalisation of theta functions 579 588
Jacobian functions, there exists a homogeneous polynomial relation connecting any Jacobian functions of same periods and parameter 594
Jacobi’s inversion theorem see Inversion.
JORDAN 248 392 549 623 639 666 669
Joubert 639
K nigsberger 837 342 448 459 477 529 600 607 615 628 658 661 663
Kiepert 688 639
Klein 9 25 156 159 169 177 342 343 360 373 378 383 392 429 430 431 436 438 439 544 639 648 658 654
Klein, prime form 360 427 430 433
Kohn 387
Kowalevski 658 659 662 663
Krause 296 342 468 486 600 623 674
Krazer 477 486 555 600 627
kronecker 56 79 124 445 577 600 629 631 639 666 669
Kummer 340
Lagrange 280
Laguerre 632 666
Laurent’s theorem, for variables 444
Left side of period loop 529
Liiroth 239
Lindemann 153 156 222 647
Linear transformation see Transformation.
Linearly independent -products of order 154
Linearly independent columns of periods 575
Linearly independent Jacobian functions 594
Linearly independent theta functions 446 447
Loops, period loops on a Riemann surface 21 529
Lots, of sets of places on an algebraic curve, or Riemann surface 135
Malet 663
Mathews 165
Matrices 248 283 580 666 669
Minding 221
Mittag — Leffler’s theorem for uniform function on a Riemann surface 202
Mittag — Lejler 202
Moduli of periodicity see Periods.
Moduli, for the hyperelliptie equation 88
Moduli, of the algebraic equation, are in number 9 144 148 150
Morley 2 10 14 15 16 21 24 25 79 101 124 239 342
Multiplication, by an integer, for theta functions 527
Multiplication, complex, of theta functions 629 ff.
Multiply-periodic 236 see Inversion.
Netto 20 90
Neumann 14 17 169 296 531
Noether 12 29 32 124 131 134 137 142 145 149 156 165 168 180 272 292 295 390 392 430 486 522 544 566 654 665
Noether’s (Kraus’s) -curve in space 156 157
Normal equation for a Riemann surface 83 91 103 143 145 152
Normal integrals (Riemann’s) see Integrals.
Number of independent products of -polynomials 154
Number of Jacobian functions 594
Number of odd and even theta functions 251
Number of theta functions of general order 452 463
Order of a theta function 448
Order of small quantity on a Riemann surface 2
Parameter, interchange of argument and parameter see Interchange.
Parameters, in the algebraic equation see Constants.
Period characteristics see Characteristics.
Period loop see Loops.
Реклама