Авторизация
Поиск по указателям
Baker H.F. — Abel's Theorem and the Allied Theory Including The Theory of the Theta Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Abel's Theorem and the Allied Theory Including The Theory of the Theta Functions
Автор: Baker H.F.
Аннотация: Classical algebraic geometry, inseparably connected with the names of Abel, Riemann, Weierstrass, Poincaré, Clebsch, Jacobi and other outstanding mathematicians of the last century, was mainly an analytical theory. In our century the methods and ideas of topology, commutative algebra and Grothendieck's schemes enriched it and seemed to have replaced once and forever the somewhat naive language of classical algebraic geometry. This classic book, written in 1897, covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today, and some of the most exciting ideas from theoretical physics draw on work presented here.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1897
Количество страниц: 684
Добавлена в каталог: 25.03.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Periodicity of a (1,1) correspondence 650
Periods of Riemann’s integrals 16 21
Periods of Riemann’s integrals, for integrals of second kind 323
Periods of Riemann’s integrals, general theory of systems of periods ff. 579 ff.
Periods of Riemann’s integrals, general transformation 536 538
Periods of Riemann’s integrals, linear transformation of periods 532
Periods of Riemann’s integrals, of degenerate integrals 657
Periods of Riemann’s integrals, of factorial integrals 404
Periods of Riemann’s integrals, Riemann’s and Weierstrass’s relations for the periods of integrals of the first kind, and of associated integrals of the second kind 197 285 581 587
Periods of Riemann’s integrals, rule for half-periods on a hyperelliptie surface 297
Picard 14 165 594 659
Picard’s theorem (Weierstrass’s) 658
Pick 360 430 639
Pl cker 124 165
Pl cker’s equations, for curves in space 166
Pl cker’s equations, generalised form of 123 124
Places, after linear transformation 562
Places, branch places 7 9 46 74 122 297 569
Places, determination of, for a Riemann surface with assigned period Places, loops 567
Places, for a hyperelliptie surface 297 563
Places, of a Riemann surface 1 2 3
Places, the places , ..., 255
Places, their geometrical interpretation 265 266
Places, where a rational fnnetion is infinite, to order less than 38 41 90 653
Poincar 239 372 373 439 486 594 654 659 663
Poles see Inflnities.
Polynomial, -polynomials 141
Polynomial, adjoint 121 128
Polynomial, algebraic treatment of 120
Polynomial, expression of rational functions, and algebraic integrals by means of adjoint polynomials 156 see Curves.
Polynomial, grade of 120
Polynomial, transformation of fundamental equation by -polyno- mials 142 154
Positive direction of period loop 529
Primary and associated systems of factorial fnnctions 397
Prime function (or form) see Function.
Pringsheim 445
Product expression of uniform transcendental function with single essential singularity 205
Prym 2 296 342 392 477 486 511 566 600 627
Quartic. Double tangents of plane quartic curve 381 390 647
Quotients of theta functions 310 311 390 516
Radical function see Function.
Rational function, of order 1, algebraic expression of, by adjoint polynomials 125 ff. 156
Rational function, of order 1, expressed by Riemann’s integrals 24 212
Rational function, of order 1, expressed by Weier- strase’s function 176
Rational function, of order 1, fundamental integral rational functions, algebraic determination of 105 ff.
Rational function, of order 1, infinities of, Riemann- Roch theorem, Weierstrass’s gap theorem 27 ff.
Rational function, of order 1, integral function 47 ff. 55 91 ff.
Rational function, of order 1, is an uniform function on the Riemann surface whose only infinities are poles 27
Rational function, of order 1, of order 38 137
Rational function, of order 1, of the second order 80 ff.
Rational function, of order 1, only exists when 8
Rational function, of order 1, special 25 137
Rational function, of order 1, Weierstrass’s fundamental 171 175 177 ff. 182
Reciprocal sets of zeros of adjoint polynomials 134
Residual sets of places 135
Residue, fundamental residue theorem 232 189 20
Reversible transformation see Birational.
Richelot 221 230 529 600 668
Riemann 1 2 6 9 13 45 47 77 113 115 246 248 255 296 343 397 409 628
Riemann and Weierstrass’s period relations 197 285 581 587
Riemann — Roch theorem 44 133
Riemann — Roch theorem, for factorial functions 405
Right side of period loop 529
Ritter 360 373 392 429 439 442
Roch 29
Rosanes 666
Rosenhain 221 222 246 311 459 600 607 662
Row and column see Matrices
Salmon 5 6 7 11 39 117 124 136 144 165 267 383 389
Schepp 239
Schl fli 666
Schottky 32 101 283 296 340 343 345 360 371 372 373 387 448 461 469 544 628
Schottky — Klein prime form and function 360 430 433
Schubert 665
Schwarz 14 654
Scott 473
Sequence, theorem of 114 161 165
Sequent sets of places 135
Sets of places on a Riemann surface or algebraic curve 135 see Special.
Sign of equivalence and congruence 236 256 261 264 487
smith 12 600 639 666 674 675
Sohnke 689
Special correspondences on a Riemann surface 648
Special rational functions 25 62 137
Special sets of zeros of adjoint polynomials 134 147
Special transformation of a theta function ff. 639 660
Stahl 288 301 392 430 486 502
Stickelberger 666
Stolz 2
Strength of assigned zeros, as determinators of a polynomial 133
Supplementary transformations of a theta function 552
Sylvester 136
System, G pel see Characteristics.
Syzygetic characteristics 487 542
Taber 668
Tables of Characteristics 303 305
Tangents, double, of a plane curve, by the principle of correspondence 644 646
Theta functions, addition theorem for hyperelliptic 882 337
Theta functions, algebraic expression for hyperelliptic 435
Theta functions, algebraic expression of first logarithmic derivatives of 288 290 320
Theta functions, algebraic expression of quotients of 310 311 390 426
Theta functions, algebraic expression of second logarithmic derivatives of 293 324 329 333
Theta functions, convergence of 247
Theta functions, determination of, from periodicity 444
Theta functions, General theta function of first order 283 444
Theta functions, General theta function of first order, addition theorems for 457 472 481 513 521
Theta functions, General theta function of first order, expression of Jacobian functions by means of 594
Theta functions, General theta function of first order, G pel relation for, in case see G pel;
Theta functions, General theta function of first order, period relations 285 197 581 587
Theta functions, General theta function of first order, second logarithmic derivatives of 516
Theta functions, hyperelliptic 296 ff.
Theta functions, identical vanishing of 258 271 276 303
Theta functions, number of odd and even 446
Theta functions, period properties of 249
Theta functions, Riemann’s functions not the most general 248 628
Theta functions, Riemann’s theta functions 246 ff.
Theta functions, solution of inversion problem by means of 275 324 390 426 ff.
Theta functions, Theta functions of second and higher order 448
Theta functions, Theta functions of second and higher order, every theta functions of same order, periods, and characteristic, connected by a homogeneous polynomial relation 453
Theta functions, Theta functions of second and higher order, expression of, number of linearly independent 452 463
Theta functions, Theta functions of second and higher order, of order 2, of special kind 509 510
Theta functions, Transformation of theta functions see Transformation;
Theta functions, Transformation of theta functions, characteristics of theta functions see Characteristics;
Theta functions, Transformation of theta functions, complex multiplication of theta functions 629 ff. 639 660
Theta functions, Transformation of theta functions, hyperelliptic case 433
Theta functions, Transformation of theta functions, particnlar cases 430 ff.
Theta functions, Transformation of theta functions, theta functions Theta functions, Transformation of theta functions, expressed by factorial functions and simpler theta fnnetions 426
Theta functions, zeros of 252 255 258 567
Thomae 288 296 318 533 556 600
Thompson 436
toeplitz 383
Transcendental uniform function 200
Transcendental uniform function, application of Laurent’s theorem when the function is integral 444
Transcendental uniform function, expressed in prime factors 205
Transcendental uniform function, Mittag- Leffler’s theorem for 202
Transformation of characteristics see Characteristics.
Transformation of periods 528 534 539 551 553 555 559 568
Transformation of the algebraic equation (or Riemann surface) 3 143 145 151 152 654 655
Transformation of theta functions 535
Transformation of theta functions for any odd order, general theorem 614
Transformation of theta functions for hyperelliptic case 568
Transformation of theta functions of second order 603 617
Transformation of theta functions, composition of 551
Transformation of theta functions, for any odd order, constants in 620 622
Transformation of theta functions, linear transformation 539
Transformation of theta functions, linear transformation constants in 554 559
Transformation of theta functions, special transformations 629 660
Transformation of theta functions, supplementary transformations 552
Transformation of theta functions, when coefficients not integers 625
uniform see Rational and
Valentin 101
Valentiner 124 165 665
Vanishing of theta function 253 258 271 276 303
Variables, homogeneous 118 429 441
Voss 137
Weber 8 56 270 272 37 387 392 430 460 486 538 538 559 600 615 620 639 674
Weierstrass 32 93 99 101 177 195 197 205 231 239 242 246 301 311 317 326 389 443 474 486 525 570 571 572 573 577 579 594 628 653 654 658 666
Weierstrass’s gap theorem 32 34 93 174
Weierstrass’s gap theorem, canonical surface (or equation) 90 ff. 93
Weierstrass’s gap theorem, fundamental rational fnnction 171 175 177 178 182 189
Weierstrass’s gap theorem, period relations 197 ff. 285 581 587
Weierstrass’s gap theorem, rule for characteristics of hyperelliptic theta functions 569
Weierstrass’s gap theorem, special places which are the poles of rational functions of order less than 34 ff.
Weierstrass’s gap theorem, theorem for degenerate integrals 658
White 165
Wiltheiss 842 600 629 660 662 674
Wirtinger 340 486 578 628
Zeros, generalised zeros of a polynomial 121
Zeros, zeros of Riemann theta function 252
Zeta function 287 292 320
Zeuthen 647
Реклама