|
|
Результат поиска |
Поиск книг, содержащих: Maclaurin, Colin
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 20 266 379.J | Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 310 | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 455, 593 | Coxeter H.S.M. — Non-Euclidean Geometry | 48 | Merris R. — Combinatorics | 260 | Ewald W. — From Kant to Hilbert, Vol.2 | 11, 13, 58, 61, 93—122, 129, 168, 169, 170, 225, 315, 316, 317, 318, 492, 561, 838 | Ewald W. — From Kant to Hilbert, Vol.1 | 11, 13, 58, 61, 93—122, 129, 168, 169, 170, 225, 315, 316, 317, 318, 492, 561 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 428—429, 442, 461, 522—523, 552—553, 606 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 428—429, 442, 461, 522—523, 552—553, 606 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 322, 445—446 | Phillips G.M. — Interpolation and Approximation by Polynomials | vi, 133 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 428—429, 442, 461, 522—523, 552—553, 606 | von zur Gathen J., Gerhard J. — Modern computer algebra | 186, 187, 272, 717 | Truesdell C. — Essays in the History of Mechanics | 111, 149, 215 | Gordon H. — Discrete Probability | 165 | Struik D.J. — A concise history of mathematics. Volume 2 | 186, 187 | Coxeter H.S.M. — The Real Projective Plane | 40, 69—70, 78 | Hancock H. — Elliptic Integrals | 6 | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 212 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 11, 13, 58, 61, 93—122, 129, 168, 169, 170, 225, 315, 316, 317, 318, 492, 561, 838 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 263 | Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 304 | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 331 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 11, 13, 58, 61, 93—122, 129, 168, 169, 170, 225, 315, 316, 317, 318, 492, 561 | Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 304 | Jammer M. — Concepts of space: The history of theories of space in physics | 28, 130 | Kline M. — Mathematical thought from ancient to modern times | 428, 429, 442, 461, 522, 523, 552, 553, 606 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 237 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 119 | Hancock H. — Elliptic Integrals | 6 | Hancock H. — Elliptic integrals | 6 |
|
|