|
|
Результат поиска |
Поиск книг, содержащих: Hurwitz, Adolf
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 3.K 9.I 10.E 11.D 83.B 134.r 198.r 339.D 367.B 450.B, r | Berger M. — A Panoramic View of Riemannian Geometry | 30 | Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers | 37, 81, 177, 203, 315, 316, 338, 412 | Apostol T.M. — Introduction to Analytic Number Theory | 249 | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 604 | Ewald W. — From Kant to Hilbert, Vol.2 | 1087 | Ewald W. — From Kant to Hilbert, Vol.1 | 1087 | Olds C.D., Davidoff G. — Geometry of Numbers | 151 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 793, 1003 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 249 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 345, 375, 376 | Apostol T.M. — Modular Functions and Dirichlet Series in Number Theory | 55, 145 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 793, 1003 | Guy R.K. — Unsolved Problems in Number theory | D12 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 793, 1003 | von zur Gathen J., Gerhard J. — Modern computer algebra | 82, 712 | Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 42 | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 360, 603 | Coxeter H.S.M. — Regular Polytopes | 164 | Knuth D.E. — The art of computer programming (vol. 1 Fundаmental algorithms) | 44 | Hardy G.H., Wright E.M. — Introduction to theory of numbers | 37, 81, 177, 203, 315, 316, 338, 412 | Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers | 37, 81, 177, 203, 315, 316, 338, 412 | Coxeter H. — Regular polytopes | 164 | Hartshorne R. — Algebraic Geometry | 301, 305, 326 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 1087 | Zeidler E. — Oxford User's Guide to Mathematics | 458 | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 134, 238 | Krantz S. — Mathematical apocrypha redux | 24 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 1087 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 37 | Krantz S. — Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical (Spectrum) (Spectrum) | 24 | Kline M. — Mathematical thought from ancient to modern times | 793, 1003 | Brezinski C. — History of Continued Fractions and Padé Approximants | 146, 149, 150, 160, 184, 194, 209, 257, 267, 270, 296, 297, 391, 465 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 55, 83 | Knuth D.E. — Selected papers on discrete mathematics | 222—223 |
|
|