|
|
Результат поиска |
Поиск книг, содержащих: Tensor, symmetric
Книга | Страницы для поиска | Eisenhart L.P. — Riemannian geometry | 11 | Lee J.M. — Introduction to Smooth Manifolds | 182 | Torretti R. — Relativity and Geometry | 99 | Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 165 | O'Donnel P. — Introduction to 2-Spinors in General Relativity | 137 | Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 12, 194, 202, 211, 220,225, 241—257, 259, 269, see also matrix, symmetric | Baez J.C., Segal I.E., Zhou Z. — Introduction to algebraic and constructive quantum field theory | 47,48, 50 | Bourbaki N. — Algebra I: Chapters 1-3 | III, § 6, no. 3 | Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 575 | Guggenheimer H.W. — Differential Geometry | 185 | Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 357 | Strelkov S.P. — Mechanics | 231, 302 | D'Inverno R. — Introducing Einstein's Relatvity | 63, 64, 67, 81, 144 | Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 25, 93 | Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 55 | Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 164 | Thompson Philip A. — Compressible-fluid dynamics | 10 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 26 | Landau L.D., Lifshitz E.M. — The classical theory of fields | 16, 22 | Ohanian H.C. — Classical Electrodynamics | 11, 203, 246 | Gurevich G.B. — Foundations of the theory of algebraic invariants | 103 | Davis H. F., Snider A. D. — Introduction to Vector Analysis | 224, 265 | Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 12, 13, 70, 102, 177, 216 | Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 100, 105 | Boerner H. — Representations of Groups | 128, 131, 148 | Griffits D.J. — Introductions to electrodynamics | 535, 537 | Schutz B.F. — A first course in general relativity | 72, 84, 85 | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 10, 11 | Lee A. — Mathematics Applied to Continuum Mechanics | 41, 55 | Necas J., Hlavacek I. — Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction | 17 | Dennery P., Krzywicki A. — Mathematics for Physicists | 147 |
|
|