Книга | Страницы для поиска |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 70 |
Rudin W. — Principles of Mathematical Analysis | 56 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 9 |
Apostol T.M. — Mathematical Analysis | 184 |
Rudin W. — Real and Complex Analysis | 14 |
Graves L.M. — Theory of Functions of Real Variables | 58, 62, 98 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 8 |
Hancock H. — Theory of Maxima and Minima | 63,94,104,136. See Upper limit |
Estep D.J. — Practical Analysis in One Variable | 62, 312 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 120 |
Khuri A.I. — Advanced calculus with applications in statistics | 136 |
Barlow R. — Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences | 127—129, 132—134 |
Rudin W. — Real and complex analysis | 14 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 111 |
Serra J. — Image Analysis and Mathematical Morphology | see “Semi-continuity” |
Köthe G. — Topological vector spaces I | 39 |
Hu S.-T. — Elements of real analysis | 66 |
Bolza O. — Lectures of the Calculus of Variations | 3, 10 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 2 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 761 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 46 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 24 |
Williamson J.H. — Lebesgue Integration | 13 |
Knopp K., Bagemihl F. — Infinite Sequences and Series | 16, 27 |
McShane E.J., Botts T.A. — Real Analysis | 54 |
Kestelman H. — Modern theories of integration | 100 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 8 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 206 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | see "Limit inferior" |
Pier J.-P. — Mathematical Analysis during the 20th Century | 35 |
Oldham K., Spanier J. — The fractional Calculus: Theory and applications of differentiation and integration to arbitrary order | 87—89 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 9 |
Braides A. — Gamma-convergence for Beginners | 20 |
Apostol T. — Mathematical Analysis, Second Edition | 184 |
Pallaschke D., Rolewicz S. — Foundations of Mathematical Optimization. Convex Analysis without Linearity | 338 |
Serra J. — Image Analysis and Mathematical Morphology | see "Semi-continuity" |
Andrea Braides — Gamma-convergence for Beginners (Oxford Lecture Series in Mathematics and Its Applications, 22) | 20 |