|
|
Результат поиска |
Поиск книг, содержащих: Morse lemma
Книга | Страницы для поиска | Guillemin V., Pollack A. — Differential topology | 42 | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 465 | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 520 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 279.B | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | I110, I343 | Evans L.C. — Partial Differential Equations | 212 | Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 58 | Terng Ch. — Critical Point Theory and Submanifold Geometry | 199 | Bergh J., Teillaud M. (Ed) — Effective Computational Geometry for Curves and Surfaces | 301 | Samelson R.M., Wiggins S. — Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach | 25, 128 | Arnold V.I. — Theory of Singularities and Its Applications | 5 | Voisin C. — Hodge theory and complex algebraic geometry 2 | 20, 21 | Ito K. — Encyclopedic Dictionary of Mathematics | 279.B | Hale J.K., Kocak H. — Dynamics and Bifurcations | 542 | Audin M. — Torus Actions on Symplectic Manifolds | 108 | Haller G. — Chaos Near Resonance | 377 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 573 | Candel A., Conlon L. — Foliations I | 151, 152 | Frankel T. — The geometry of physics: an introduction | 384 | Pier J.-P. — Mathematical Analysis during the 20th Century | 287 | Vassiliev V.A. — Applied Picard-Lefschetz Theory | 38 | Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 572 | Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 138 | Frankel T. — The geometry of physics: An introduction | 384 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 573 | Nash C., Sen S. — Topology and geometry for physicists | 229 |
|
|