|
|
Результат поиска |
Поиск книг, содержащих: Harmonic measure
Книга | Страницы для поиска | Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 197, 320 | Hedenmalm H., Korenblum B., Zhu K. — Theory of Bergman spaces | 218, 219, 225, 232 | Connes A. — Noncommutative geometry | IV.3.$\delta$ | Garnett J.B. — Bounded Analytic Functions | 13, 41, 367 | Bergman S. — The Kernel Function and Conformal Mapping | 45, 144, 150 | Koosis P. — The Logarithmic Integral (Vol. 1) | 251ff | Farkas H., Kra I. — Riemann Surfaces | 165, 167 | Axler S., Bourdon p., Ramey W. — Harmonic function theory | 237 | Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 41, 224—225 | Pommerenke C. — Univalent functions (Studia mathematica) | 313, 352 | Ahlfors L.V. — Complex analysis | 244—249 | Garnett J.B. — Bounded Analytic Functions | 12, 40, 357 | Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | I.5D, III.2C | Aikawa H., Essen M. — Potential Theory - Selected Topics | 152, 172, 180, 185 | Haran S.M.J. — Arithmetical Investigations: Representation Theory, Orthogonal Polynomials, and Quantum Interpolations | 35, 46 | Chung K.L., Walsh J.B. — Markov Processes, Brownian Motion, and Time Symmetry | 162, 412 | Lukes J., Maly J., Zajicek L. — Fine Topology Methods in Real Analysis and Potential Theory | 355 | Chabrowski J. — Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations | 81, 166 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 1.15, 2.14, 8.1, 8.11, 12.9, 12.10, 16.15, S.16.22, 18.1, 18.6, 18.14, 18.16, 19.8 | Driscoll T.A., Trefethen L.N. — Schwarz-Christoffel Mapping | 114 | Korevaar J. — Tauberian Theory: A Century of Developments | 367 | C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 154 | Nehari Z. — Conformal mapping | 38, 357 | Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 326 | Gel'fand I. M., Graev M. I., Vilenkin N. Ya. — Generalized Functions. Volume 5. Integral Geometry and Representation Theory | 289 | Guy David — Wavelets and Singular Integrals on Curves and Surfaces | 78, 97 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | VIII, 312 | Dawson D. — Introduction to Markov Chains | 50 | Courant R. — Dirichlet's Principle, Confomal Mapping and Minimal Surfaces | 251, 261, 280, 295 | Chung K.L., Walsh J.B — Markov Processes, Brownian Motion, and Time Symmetry | 162, 412 | Maeda F.Y. — Dirichlet Integrals on Harmonic Spaces | 2 | Donoghue Jr.W.F. — Monotone Matrix Functions and Analytic Continuation | 159 | Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 61 | Drmota M., Flajolet P., Gardy D. — Mathematics and computer science 3. Algorithms, trees, combinatorics and probabilities | 445 | Heinonen J. — Lectures on Analysis on Metric Spaces | 88, 108 | Hejhal D.A. — The Selberg Trace Formula for PSL(2,R) (volume 2) | 725 |
|
|