|
|
Результат поиска |
Поиск книг, содержащих: Function, harmonic
Книга | Страницы для поиска | Bartle R.G. — The Elements of Real Analysis | 271 | Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 14, 184—191, 320 | Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 332, 336 | Rudin W. — Principles of Mathematical Analysis | 297 | Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 214, 215, 216, 217, 219, 222, 230, 245, 258, 274 | Molchanov V.F. — Harmonic Analysis on Homogeneous Spaces | 43 | Rudin W. — Real and Complex Analysis | 223 | Farkas H., Kra I. — Riemann Surfaces | 24, 151 | Ahlfors L.V. — Complex analysis | 25, 160—172, 233—243 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 211, 318 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 404 | Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 39 | Jetter K. (Ed), Schaback R. (Ed) — Topics in Multivariate Approximation and Interpolation | 101 | Lukes J., Maly J., Zajicek L. — Fine Topology Methods in Real Analysis and Potential Theory | 318, 327, 348, 350, 351 | Rudin W. — Functional analysis | 163, 366 | Nikolaev E., Zhuzhoma I. — Flows on 2-Dimensional Manifolds: An Overview | 242 | Rudin W. — Real and complex analysis | 232 | Carmo M.P. — Differential geometry of curves and surfaces | 201 | Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 11 | Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | 317 | Port S.C., Stone C.J. — Brownian motion and classical potential theory | 85 | Bak J., Newman D.J. — Complex Analysis | 200 | Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 106, 198 | Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 209 | Olver P.J., Shakiban C. — Applied linear. algebra | 369, 372 | Kreyszig E. — Advanced engineering mathematics | 465, 622, 772 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 175, 275, 370 | de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 87 | Browder A. — Mathematical Analysis: An Introduction | 314 | Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 169 | Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 110 | Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 236 | Synge J.L. — Relativity: The general theory | 311, 313, 341, 369ff | Borodich F. — Theory of Elasticity | 232, 273 | Dawson D. — Introduction to Markov Chains | 32 | Hsiung C.-C. — A first course in differential geometry | 222 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 211, 318 | Klimyk A.U., Vilenkin N.Ya. — Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions | 43 | Zeidler E. — Oxford User's Guide to Mathematics | 502, 563 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 501 | Woods F.S. — Advanced Calculus | 310 | Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 85, 91 | Zorich V.A., Cooke R. — Mathematical analysis II | 286, 304 | Zorich V. — Mathematical Analysis | 286, 304 | Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 236 | Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "harmonic function" | Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 78 |
|
|