|
|
Результат поиска |
Поиск книг, содержащих: Function, differentiable
Книга | Страницы для поиска | Bartle R.G. — The Elements of Real Analysis | 227 | Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 143 | Rudin W. — Principles of Mathematical Analysis | 104, 212 | Messer R. — Linear Algebra: Gateway to Mathematics | 44 | Goldberg S.I. — Curvature and homology | 4 | Isham J. — Modern Differential Geometry for Physics | 70 | Heikkila S., Lakshmikantham V. — Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 51 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 39 | Small Ch.G. — Functional Equations and how to Solve Them | 9 | Bogachev V.I. — Measure Theory Vol.1 | 329 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 251 | Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 25 | Searcid M. — Metric Spaces | 156—157 | Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 34 | Lange K. — Optimization | see “Differentiable function” | Montiel S., Ros A. — Curves and Surfaces | 40 | Bolstad W.M. — Introduction to Bayesian Statistics | 339 | Khuri A.I. — Advanced calculus with applications in statistics | 94, 113 | Shiffer M.M., Bowden L. — Role of Mathematics in Science | 165 | Spivak M. — Calculus | 137, 515 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 410 | Burn R.P. — Numbers and Functions: Steps to Analysis | 8.4 | Carmo M.P. — Differential geometry of curves and surfaces | 72, 125 | Karman T., Biot A.M. — Mathematical Methods in Engineering | 473 | Pap E. — Complex Analysis Through Examples And Exercises | 53 | Bak J., Newman D.J. — Complex Analysis | 24 | Price J.F. — Lie groups and compact groups | 2 | Ash R.B. — Real Variables with Basic Metric Space Topology | 81ff | M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 33 | Astfalk G. — Applications on Advanced Architecture Computers | 281 | Nicholson W.K. — Linear Algebra with Applications | 202 | Rall L.B. — Automatic Differentiation: Techniques and Applications | 9 | Brickell F., Clark R.S. — Differentiable manifolds | 21 | David O.Tall — Advanced Mathematical Thinking | 188, 238 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 113, 544 | Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 3 | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 257 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 39 | Intriligator M.D. — Mathematical optimization and economic theory | 465 | Zeidler E. — Oxford User's Guide to Mathematics | 251, 263 | Lancaster P. — Mathematics: Models of the Real World | 80 | Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 15, 16, 105 | Courant R. — Differential and Integral Calculus, Vol. 1 | 91, 97, 109, 199, 244 | Burden R.L., Faires J.D. — Numerical analysis | 3 | Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 2, 138—139, 144 | Canuto C., Tabacco A. — Mathematical analysis | 168, 187 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 113, 544 | Schiffer M.M. — The role of mathematics in science | 165 |
|
|