Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Carr G.S. — Formulas and Theorems in Pure Mathematics
Carr G.S. — Formulas and Theorems in Pure Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Formulas and Theorems in Pure Mathematics

Автор: Carr G.S.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1970

Количество страниц: 988

Добавлена в каталог: 07.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Harmonic progression or proportion, sum of      Pr.20
Harmonic section by a quadric and polar plane      5687
Harmonics in a triangle      A.57
Helix      5756 A.64
Helix, conical      N.13 53
Helix, conical, rectif. of      N.45
Helix, relation with cycloid      C.51
Helixon a twisted cone      A.16
Hemisphere, volume, &c.      6061
Hermite's $\phi$ function, linear transf. of      M.3
Herpolode of Poinsot      C.99
Hesse's surface, &c.      Z.19
hessian      1630 J.80
Hessian of a quaternary function      Q.12
Hessian of a quaternary function, cubic      Q.7
Hessian of a surface, nodes of      J.59
Hessian of a surface, nodes of, constant of      M.23
Hessian, covariant of binary quintic form      M.21
Hessian, curve      M.13
Hexagon      thN.65
Hexagon in space      J.85 93
Hexagon, Pascal's      see "Pascal"
hexahedron      907
Higher algebra      An.54 Q.45
Higher algebra, Serret      N.55
Higher analysis      A.25 G.14
Higher Arithmetic      J.6 9 N.81
Higher geodesy      Z.19 trZ.13
Higher geometry      A.10 N.57 Z.6 17
Higher planes      A.47
Higher variation of simple integrals      Z.22
Highest common factor      30 A.3 M.7 N.42 44 45
Highest common factor of 2 complex numbers, no of divisions      L.46 48
Highest common factor of 2 polynomials      CM.4
Highest common factor, remainder in the process      C.42
Holditch's theorem      see "Closed curve"
Holomorphic functions      C.99 G.22
Holomorphic functions, development in series      C.94 M.21
Homalographic projection      N.61
Homaloidal system, n-tic surface and an (n-1)-ple point      G.13
Homofocal and conjugate surfaces, tr      Z.7
Homofocal common tangents of      C.22 L.46
Homofocal conics      thN.49
Homofocal conics, loci relating to parallel tangents      C.62 63
Homofocal quadrics      C.50 L.th51 60 N.th64 79 Pr.33
Homofocal quadrics, paraboloids      A.35
Homofocal quartic surfaces, triple system of, including the wave surface      N.85
Homofocal sphero-conics      L.60
Homofocal surfaces, and $\mu sin^{2}i^{'}+\nu sin^{2}i^{''}=a^{2}$      C.22
Homogeneity of formulae      C.96 thsN.49
Homogeneous coordinates      G.1 8 Z.15
Homogeneous coordinates, metrical relation      G.11
homogeneous functions      see "Quantics"
Homogeneous products, H(n, r)      98—99 Q.6 9 10
Homogeneous products, H(n, r) and sums of powers      538 E.39 40
Homographic division of three tangents to a conic      Mel.2
Homographic figures      threeC.94 thQ.3 N.58 68 pr61
Homographic figures, corresponding points, th      L.45
Homographic figures, focal properties      LM.2
Homographic figures, relation of roots      N.73
Homographic pencils      4651
Homographic systems of points      1058—1073
Homographic systems of points on quadric scrolls      Q.9
Homographic theorem of a conic      N.48 49
Homographic transformation      N.70
Homographic transformation of angles      Q.14
Homography      Me.62 N.60 Z.21
Homography and perspective      N.69
Homography and rotations, correspondence of      M.15
Homological polar reciprocal curves      ET.44
Homology      975 G.3 8 N.44 E.24
Homology of sets      Q.2
Homology of triangles      975 Me.73
Homology, conic of      C.94
Homothetic conics      4523 N.64 th68
Homothetic conics with the same centre      C.66
Horograph      5826
Hyberbolic arc, rectification of      6115 J.55 P.2 11 59
Hyberbolic arc, rectification of, Landen's theorem      6117 LM.11 13
Hyper-elliptic $\theta$-functions, alg. characteristics      M.25
Hyper-elliptic functions      A.16 AJ.5 7 An.70 C.40 62 67 92 94 97 CD.3 J.25 27 30 40 47 52 54 75 76 81 85 L.54 M.3 11 13 Q.15 19
Hyper-elliptic functions and mechanics      J.56
Hyper-elliptic functions in logarithmic algebraic functions      M.11
Hyper-elliptic functions of 1st and 2nd kind      An.58 J.93
Hyper-elliptic functions of 1st and 2nd kind in series      M.9
Hyper-elliptic functions of 1st order      J.12 16 35 98
Hyper-elliptic functions of 1st order and 3rd kind      J.65 68 88
Hyper-elliptic functions of 1st order, containing transcendents of 2nd and 3rd kind      J.82
Hyper-elliptic functions of 1st order, multiplication of      Ac.3 M.17 20
Hyper-elliptic functions of 1st order, transformation of      Ac.3
Hyper-elliptic functions of 1st order, transformation of 2nd degree      M.9 Mo.66
Hyper-elliptic functions of 1st order, transformation of 3rd degree      M.1 19
Hyper-elliptic functions of 1st order, transformation of, p=2      M.15
Hyper-elliptic functions of 1st order, transformation of5th degree      M.16 17 20
Hyper-elliptic functions of 3rd kind, exchangeability of parameter and argument      J.31
Hyper-elliptic functions of 3rd order, p=4      M.12
Hyper-elliptic functions of nth order, algebraic relations      C.99
Hyper-elliptic functions of nth order, algebraic relations, Goepel's relation      An.82
Hyper-elliptic functions of two arguments, complex mult. of      M.21
Hyper-elliptic functions with quartic curves, 4 tables      M.10
Hyper-elliptic functions, addition th. for 1st order in a system of confocal quadrics      M.22
Hyper-elliptic functions, addition theory      M.7
Hyper-elliptic functions, approximation to      P.60 62
Hyper-elliptic functions, choice of moduli      C.88
Hyper-elliptic functions, division of      C.68 98 L.43 M.1
Hyper-elliptic functions, division of, bisection      C.70
Hyper-elliptic functions, division of, trisection      An.76 M.2
Hyper-elliptic functions, generalisation of      C.84 98
Hyper-elliptic functions, geo. representation      L.78
Hyper-elliptic functions, inversion of      C.99 J.70
Hyper-elliptic functions, periodic      J.32
Hyper-elliptic functions, periodic, of the 1st class      LM.12
Hyper-elliptic functions, periodic, with four periods      An.71
Hyper-elliptic functions, periodicity moduli      A.68 An.70
Hyper-elliptic functions, reduction of, to elliptic integrals      Ac.4 C.85 93 99 J.55 76 79 86 89 M.15 TI.25
Hyper-elliptic functions, transformation      M.7 pr13
Hyper-elliptic functions, transformation of 2nd order, which, applied twice in succession, produces the duplication      C.88
Hyper-Fuchsian functions from hypergeometric series of two variables      C.99
Hyper-Fuchsian groups      C.98
Hyper-geometric functions or series      291 A.55 57 J.15 75 M.3 Q.16 Z.8 26 27
Hyper-geometric functions or series and Jacobi's polynomials      C.89
Hyper-geometric functions or series as continued fractions      291—292 J.66
Hyper-geometric functions or series of nth order      C.96 J.71 72 M.2
Hyper-geometric functions or series of two variables      C.90 91 95 L.82 84
Hyper-geometric functions or series of two variables, extension of Riemann's problem      C.90
Hyper-geometric functions or series, square of      J.3
Hyper-geometric integrals      J.73 Z.22
Hyper-Jacobian surfaces and curves      LM.9 P.77 Pr.26
Hyperbola with asymptotes for coord, axes      4387 Me.73
Hyperbola, asymptotic properties      1182
Hyperbola, conjugate      1160
Hyperbola, construction      1247 1289
Hyperbola, eccentric circles      A.44
Hyperbola, quadrature of, &c.      6118 A.25 26 27 N.44
Hyperbola, quadrature of, &c., multiple areas      TI.7
Hyperbola, rectangular      4392 Z.26
Hyperbola, rectangular under 4 conditions      A.3
Hyperbola, segment of      6118 N.61
Hyperbola, theorems      A.27 46 CD.1 N.42
Hyperbolic functions      2180 A.19 G.15 Mem.30 N.64
Hyperbolic functions, analogy with the circle      An.51
Hyperbolic functions, ap. to evolution and solution of eqs.      A.38
Hyperbolic functions, construction of tables of      J.16
Hyperbolic functions, generalization of      A.35
Hyperboloid      5605 J.85 Me.66
Hyperboloid and relation to ruled surfaces      Z.23
Hyperboloid of revolution      N.72
Hyperboloid, conjugate      CD.2
Hyperboloid, equilateral and of revolution      Ac.5
Hyperboloid, generating lines of      5607
Hyperboloid, one-fold      5605
Hyperboloid, one-fold of rotation      A.70 L.39 M.18 N.58
Hyperboloid, one-fold of rotation, parameter of a parabolic section of      N.75
Hyperboloid, theorems      geoG.4 J.24 86
Hyperboloid, two-fold      5617 A.18 ths27
Hyperboloidic projection of a cubic "gobba"      An.63
Hypercycles      C.94
Hyperdeterminants      CD.9 J.34 42
Hypocycloid      5266
Hypocycloid with 2 cusps      Z.19
Hypocycloid with 3 cusps      J.64 Me.83 N.70 75
Hypsometric tables of Bessel      Pr.12
icosahedron      907 M.12 25
Icosahedron and star dodecahedrons      Z.18
Icosian game      Q.5
Imaginary $tan^{-1}(\xi+i\eta)$ in the form x+iy      A.49
Imaginary $\phi(x, y)+i\psi(x, y)=F(x+iy)$ to determine $\phi$ and $\psi$      A.10
Imaginary $\sqrt[3]{}\sqrt{a+ib}$ in the form x+iy      A.55
Imaginary circular points at infinity      4717 4918 4935 tg.eq4998 5001 Me.68 Q.3 8 32
Imaginary coordinates      4761 C.75 Man.79 homog.Q.18
Imaginary curves      Q.7
Imaginary elements in geometrical constructions, and apparent uncertainty therefrom      Z.12
Imaginary exponents      A.6
Imaginary geometry      4916 A.32 61 C.61 CD.7 8 J.55 70 M.11 Me.81 N.70 72 TE.16
Imaginary geometry of Lobatschewski      G.5 J.17 N.68
Imaginary geometry of Standt      M.8
Imaginary geometry, use in geometrical drawing      J.1
Imaginary integrals of d.e      C.23
Imaginary lines through imaginary points      4761 4722—4723
Imaginary prime factors of complex numbers formed from the roots of irreducible rational equations      Z.10
Imaginary problem, Newton — Fourier      AJ.2
Imaginary quantities      223 A.20 22
Imaginary quantities, 8 square      AJ.4 C.18 24 25 88 94 JP.23 N.63 64 P.1 6 31
Imaginary quantities, ap. to primitive functions of some derived functions      N.63
Imaginary quantities, conjugates      223
Imaginary quantities, conjugates, modulus of      227
Imaginary quantities, logarithm of      2214 LM.2
Imaginary tangents through the focus of a conic      4720—4721 5008 A.22
Imaginary transformation of coordinates      Q.7
Imaginary variables      C.96
Imaginary variables, generating polygons of a relation between several      JP.30
Imaginary variables, polygons of      C.92
Implexes of surfaces      C.80
Implicit functions of n independent variables      1737 An.58
Implicit functions of one independent variable, $\phi(xy)$; values of $\phi_{x}$, $\phi^{2x}$, $\phi_{3x}$      1700—1706
Implicit functions of one independent variable, $\phi(xy)$; values of $\phi_{x}$, $\phi^{2x}$, $\phi_{3x}$, $y_{x}$, $y_{2x}$, $y_{3x}$, when $\phi(x, y)=0$      1707—1716
Implicit functions of one independent variable, $\phi(xy)$; values of $\phi_{x}$, $\phi^{2x}$, $\phi_{3x}$, $y_{x}$, $y_{2x}$, $y_{3x}$, when $\phi(x, y)=0$, $y_{nx}$      An.58
Implicit functions of one independent variable, $\phi(xy)$; values of $\phi_{x}$, $\phi^{2x}$, $\phi_{3x}$, $\phi_{x}(u, y, z)$, $\phi_{2x}(u, y, z)$      1720—1721
Implicit functions of one independent variable, $\phi(xy)$; values of $\phi_{x}$, $\phi^{2x}$, $\phi_{3x}$, $\phi_{\xi}(x, y, z, \xi)$ when 3 eqs. connect $x, y, z, \xi$      1723
Implicit functions of one independent variable, $\phi(xy)$; values of $\phi_{x}$, $\phi^{2x}$, $\phi_{3x}$, the same when $\psi(x, y)$ is also given      1718—1719
Implicit functions of two independent variables, $y_{xz}$ when $\phi(x, y, z)$      1728
Implicit functions of two independent variables, $\phi(x, y, z, \xi, \eta)$ when 3 eqs. connect $x, y, z, \xi, \eta$      1735
Implicit functions of two independent variables, $\phi_{x}(x, y, z)$, $\phi_{2x}$, $\phi_{xz}$, when $\psi(x, y, z)=0$      1729—1732
Implicit functions, defined by an alg. eq.      C.47
Implicit functions, determined by the infinitesimal calculus      C.34
Implicit functions, transf. into explicit functions      C.38
Implicit functions, transf. into isotropic means and trig. series      C.38
Incommensurable limits of numbers      N.81
Incommensurable lines      N.44
Incommensurable lines in ratio $\surd 3$      1 A.3
Incommensurable numbers      JP.15 N.43
Increment      1484
Indeterminate coefficients      232 1527 A.3 J.5
Indeterminate equations      188—194 C.10 th78 88 G.5 J.9 Mem.44 N.44 45 pr57 59 71 78 81 prs81 85 TE.2 see "Partition"
Indeterminate equations and congruences      Pr.11
Indeterminate equations, $ax^{m}+by^{m}=cz^{n}$      N.79
Indeterminate equations, $a^{x}-b^{y}=1$      N.57
Indeterminate equations, $x^{2n}-y^{2n}=2x^{n}$      L.40
Indeterminate equations, $x^{2}-ay^{2}=z^{n}$      C.99
Indeterminate equations, $x^{m}=y^{n}+1$, impossible      N.50 70 71
Indeterminate equations, $x^{n}+y^{n}=z^{n}$ impossible if n>2 (Fermat's last th.)      A.26 58 An.64 C.24 89 90 98 J.17
Indeterminate equations, ap. to a geo. problem      Mem.20 Z.20
Indeterminate equations, exponential, $x^{y}=y^{x}$      A.6 Z.23
Indeterminate equations, higher degrees, $ax^{4}+bx^{2}y^{2}+cy^{4}+dx^{3}y+exy^{3}=fz^{2}$      C.88
Indeterminate equations, higher degrees, $ax^{4}+by^{4}=z^{2}$      C.87 91 94 N.79
Indeterminate equations, higher degrees, $ax^{4}+by^{4}=z^{2}$, a=7, b=-5      L.79
Indeterminate equations, higher degrees, $x^{3}+y^{3}+z^{3}+u^{3}=0$      A.49
Indeterminate equations, higher degrees, $x^{3}+y^{3}=az^{3}$      N.78 80
Indeterminate equations, higher degrees, $x^{3}=y^{2}+a$      N.78 83
Indeterminate equations, higher degrees, $x^{3}=y^{2}+a$, with a=17      N.77
Indeterminate equations, higher degrees, $x^{4}+ax^{2}y^{2}+y^{4}=z^{2}$      Mem.20
Indeterminate equations, higher degrees, $x^{4}\pm 2^{m}y^{4}=z^{2}$ and similar eqs      L.53
Indeterminate equations, higher degrees, $x^{5}+y^{5}=az^{5}$      L.43
Indeterminate equations, higher degrees, $x^{7}+y^{7}=z^{2}$, impossible      C.82 L.40
Indeterminate equations, higher degrees, cubic      AJ.2
Indeterminate equations, impossible class of      N.63
Indeterminate equations, linear      JP.13 L.41 N.43 P.61 Z.19
Indeterminate equations, linear, $x_{1}+2x_{2}+...+nx_{x}=m$      G.1
Indeterminate equations, linear, with 2 unknowns      188—193 A.3 7 J.42 L.63 69 Mem.31
Indeterminate equations, linear, with 3 unknowns      194 G.2
Indeterminate equations, linear, with n unknowns      G.94 N.52
Indeterminate equations, n-tic solution by alg. identities      C.87
Indeterminate equations, quadratics in five unknown integers, $2x^{2}+3y^{2}+3z^{2}+3t^{2}+2yz=u$      L.66
Indeterminate equations, quadratics in five unknown integers, $2x^{2}+3y^{2}+3z^{2}+3t^{2}+2yz=u$, $2(x^{2}+xy+y^{2})+3(z^{2}+t^{2}+u^{2}+v^{2})=w$      L.64
Indeterminate equations, quadratics in five unknown integers, $2x^{2}+3y^{2}+3z^{2}+3t^{2}+2yz=u$, $xy+yz+zt+tu=v$      C.62 L.67
Indeterminate equations, quadratics in five unknown integers, $2x^{2}+3y^{2}+3z^{2}+3t^{2}+2yz=u$, $x^{2}+y^{2}+2z^{2}+2zt+2t^{2}+3u^{2}+3v^{2}=w$      L.64
Indeterminate equations, quadratics in five unknown integers, $2x^{2}+3y^{2}+3z^{2}+3t^{2}+2yz=u$, $x^{2}+y^{2}+z^{2}+2u^{2}+2uv+2v^{2}+t^{2}=w$      L.64
Indeterminate equations, quadratics in five unknown integers, $2x^{2}+3y^{2}+3z^{2}+3t^{2}+2yz=u$, $y^{2}=x_{1}^{2}+x_{2}^{2}...+x_{n}^{2}$      G.7
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}+exy+fzt=u$, with the following values of a, b, c, d, e, f: 1, 1, 2, 2, 0, 2; 1, 1, 1, 1, 0, 1; 1, 1, 1, 1, 1, 1; 2, 2, 3, 3, 2, 0; 1, 1, 3, 3, 1, 0      L.63
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}+exy+fzt=u$, with the following values of a, b, c, d, e, f: 1, 2, -2, 2, 1, 2      L.63
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}+exy+fzt=u$, with the following values of a, b, c, d, e, f: 1, 2, 3, 3, 1, 3; 2, 2, 3, 3, 2, 3; 1, 1, 6, 6, 1, 6      L.64
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}+exy+fzt=u$, with the following values of a, b, c, d, e, f: 2, 3, 2, 3, 2, 2; 2, 5, 2, 5, 2, 2      L.64
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}+exy+fzt=u$, with the following values of a, b, c, d, e, f: 3, 5, 10, 10, 0, 10; 2, 3, 15, 15, 2, 0; 2, 3, 3, 3, 2, 0      L.66
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of a, b, c, d: 2, 2, 3, 3      L.65
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of a, b, c, d: 2, 2, 3, 4; 2, 3, 3, 6; 3, 3, 3, 4; 1, 2, 6, 6; 2, 3, 4, 4      L.66
Indeterminate equations, quadratics in five unknown integers, $ax^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of a, b, c, d: 3, 4, 4, 4; 3, 4, 12, 48      L.63
Indeterminate equations, quadratics in five unknown integers, $x^{2}+2y^{2}+2z^{2}+3t^{2}+2yz=u$      L.64
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 1, 1; 2, 3, 6      L.45
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 1, 2; 1, 1, 4; 1, 1, 8; 2, 2, 2; 2, 4, 8; 4, 4, 4; 3, 4, 12      L.61
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 1, 3; 1, 2, 6; 2, 2, 3; 2, 4, 6; 4, 4, 12; 1, 1, 12; 2, 2, 12; 1, 4, 12; 1, 3, 4; 3, 4, 4; 4, 12, 16; 3, 6, 6; 3, 3, 3; 3, 3, 12; 3, 12, 12; 12, 12, 12      L.63
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 1, 5; 2, 3, 6; 5, 5, 5      L.46
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 2, 4; 1, 4, 8; 2, 2, 4; 2, 4, 4; 2, 8, 8; 4, 4, 8; 4, 4, 16; 4, 16, 16; 8, 8, 8; 8, 8, 16; 8, 16, 16; 16, 16, 16      L.62
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 3, 3      L.60 63
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 1, 5, 5; 1, 6, 6; 1, 9, 9; 1, n, n; 2, n, 2n      L.65 59
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: 2, 3, 3; 3, a, 3a      L.66
Indeterminate equations, quadratics in five unknown integers, $x^{2}+by^{2}+cz^{2}+dt^{2}=u$, with the following values of b, c, d: with c=ab      C.42 L.56
Indeterminate equations, quadratics in five unknown integers, $x^{2}+y^{2}+z^{2}+t^{2}=4u$      L.56
Indeterminate equations, quadratics in four unknown integers, $x^{2}+2y^{2}+3z^{2}=t$      L.69
Indeterminate equations, quadratics in four unknown integers, $x^{2}+y^{2}\pm z^{2}=t^{2}$      C.66 N.48
Indeterminate equations, quadratics in four unknown integers, $y^{2}=z^{2}+t(z+\beta)^{2}$      N.78
Indeterminate equations, quadratics in seven unknown integers, $x^{2}+ay^{2}+bz^{2}+ct^{2}+du^{2}+ev^{2}=w$, with the following values of a, b, c, d, e; 1, 1, 1, 1, 1; 1, 1, 1, 1, 2; 1, 1, 1, 2, 2; 1, 2, 2, 2, 2; 2, 2, 2, 2, 2; 2, 2, 2, 2, 4; 3, 3, 3, 3, 3      L.64
Indeterminate equations, quadratics in seven unknown integers, $x^{2}+ay^{2}+bz^{2}+ct^{2}+du^{2}+ev^{2}=w$, with the following values of a, b, c, d, e; 4, 4, 4, 4, 4; 1, 4, 4, 4, 4; 2, 2, 4, 4, 4; 1, 1, 4, 4, 4; 1, 2, 2, 4, 4; 1, 1, 1, 4, 4; 1, 1, 2, 2, 4; 1, 1, 1, 1, 4; 4, 4, 4, 4, 16      L.65
Indeterminate equations, quadratics in three unknown integers, $(a, b, c, d, e, f)\!\!( xyz)^{2}=t$      Pr.13
Indeterminate equations, quadratics in three unknown integers, $(x^{2}+ky^{2})z=ax+bky$      J.49
Indeterminate equations, quadratics in three unknown integers, $ax^{2}+by^{2}=z^{2}$      G.8
Indeterminate equations, quadratics in three unknown integers, $x^{2}+a(x+b)^{2}=y$      N.78
Indeterminate equations, quadratics in three unknown integers, $x^{2}+ay^{2}=z$      N.78
Indeterminate equations, quadratics in three unknown integers, $x^{2}+ay^{2}=z^{2}$      N.78
Indeterminate equations, quadratics in three unknown integers, $x^{2}+y^{2}+16z^{2}=4n+1$      L.70
Indeterminate equations, quadratics in three unknown integers, $x^{2}+y^{2}+16z^{2}=n^{2}$      Mel.4
Indeterminate equations, quadratics in three unknown integers, $x^{2}+y^{2}+z^{2}=0$      geoA.55
Indeterminate equations, quadratics in three unknown integers, $x^{2}+y^{2}=z^{2}$      A.22 33 E.30 G.19
Indeterminate equations, quadratics in three unknown integers, $x^{2}+y^{2}=z^{2}$, solution prior to Diophantus      C.28
Indeterminate equations, quadratics in three unknown integers, $x^{2}\pm ay^{2}=4z$      N.72
Indeterminate equations, quadratics in two unknown integers, $(n+4)x^{2}-ny^{2}=4$      N.83
Indeterminate equations, quadratics in two unknown integers, $2x^{2}+2x+1=y^{2}$      N.78
Indeterminate equations, quadratics in two unknown integers, $ax^{2}+bx+c=y^{2}$      G.7
Indeterminate equations, quadratics in two unknown integers, $ax^{2}+bx=y^{2}$      L.76
Indeterminate equations, quadratics in two unknown integers, $ax^{2}+bxy+cy^{2}+dx+cy+f=0$      C.87
Indeterminate equations, quadratics in two unknown integers, $ax^{2}+bxy+cy^{2}=0$      geoC.9
Indeterminate equations, quadratics in two unknown integers, $x^{2}+nxy-ny^{2}=1$      N.83
Indeterminate equations, quadratics in two unknown integers, $x^{2}+y^{2}=(a^{2}+b^{2})^{k}$      C.36 An.53
Indeterminate equations, quadratics in two unknown integers, $x^{2}+y^{2}=0$      geoA.55
Indeterminate equations, quadratics in two unknown integers, $x^{2}-ay^{2}=b$      C.69 L.37 38 Mem.28
Indeterminate equations, quadratics in two unknown integers, $x^{2}-ay^{2}=\pm 1$      A.12 52 E.23 28 J.17
Indeterminate equations, quadratics in two unknown integers, $x^{2}-ay^{2}=\pm 1$, by trig.      L.64—66 N.78
Indeterminate equations, quadratics in two unknown integers, $x^{2}-ay^{2}=\pm 4, a\equiv 5(mod 8)$      J.53
Indeterminate equations, quadratics in two unknown integers, $x^{2}-y^{2}=xy$ impossible      N.46
Indeterminate equations, quadric      J.45
Indeterminate equations, quadric, in n unknowns      N.84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте