|
|
Результат поиска |
Поиск книг, содержащих: Goldbach conjecture
Книга | Страницы для поиска | Apostol T.M. — Introduction to Analytic Number Theory | 9, 304 | Edwards H. — Advanced Calculus: A Differential Forms Approach | 464—465 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 489, 490 | Burton D.M. — Elementary Number Theory | 51—52 | Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 62, 319 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 39 | Beissinger J., Pless V. — The Cryptoclub: Using Mathematics to Make and Break Secret Codes | 164 | Sloane N.J.A. — Handbook of Integer Sequences | 899, 900, 959, 1116, 1694 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 75 | Cover T.M., Gopinath B. — Open problems in communication and computation | 109—110 | Guy R.K. — Unsolved Problems in Number theory | B10, B19, C1 | Hofstadter D.R. — Godel, Escher, Bach: An Eternal Golden Braid | 394—396, 400, 404, 557—558, 615 | Herman J., Simsa J., Kucera R. — Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory | 173 | Shapiro S. — Thinking about Mathematics: The Philosophy of Mathematics | 183 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 335 | Bridges D.S. — Computability: A mathematical sketchbook | 89 | Mott J.L., Kandel A., Baker T.P. — Discrete Mathematics For Computer Scientists And Mathematicians | 119 | Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians | 119 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 489, 490 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 90, 197, 371, 379 | Zeidler E. — Oxford User's Guide to Mathematics | 696 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 8 | Higgins P. — Mathematics for the curious | 84 | Keith Devlin — Mathematics: The New Golden Age | 6 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 170, 181—182 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 18 |
|
|