Авторизация
Поиск по указателям
Beissinger J., Pless V. — The Cryptoclub: Using Mathematics to Make and Break Secret Codes
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The Cryptoclub: Using Mathematics to Make and Break Secret Codes
Авторы: Beissinger J., Pless V.
Аннотация: oin the Cryptokids as they apply basic mathematics to make and break secret codes. This book has many hands-on activities that have been tested in both classrooms and informal settings. Classic coding methods are discussed, such as Caesar, substitution, Vigenère, and multiplicative ciphers as well as the modern RSA. Math topics covered include: - Addition and Subtraction with, negative numbers, decimals, and percentages - Factorization - Modular Arithmetic - Exponentiation - Prime Numbers - Frequency Analysis.
The Cryptoclub presents a number of different systems of encryption and methods of breaking them. Each type of cipher is presented in detail and exercises are included allowing students to apply the techniques presented. The Cryptoclub also includes short descriptions of famous examples of secret codes, including the Beale Ciphers, the Zimmerman telegram, and the German Enigma cipher.
The accompanying workbook provides students with problems related to each section to help them master the concepts introduced throughout the book. A PDF version is available at no charge from the publishers.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2006
Количество страниц: 199
Добавлена в каталог: 08.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
24-hour clock 105
Adleman, Leonard 176 193
Affine ciphers 145—151
Affine ciphers, cracking 148—150
Affine ciphers, decrypting 147
Affine ciphers, definition 145
Affine ciphers, key 145
Algorithm 21
ATBASH 152
Beale Ciphers 18—19
Caesar ciphers, cracking 21—25
Caesar ciphers, definition 4
Caesar ciphers, with numbers 10
Captain Kidd 39
Captain Midnight 7
Cicadas 83
Cipher strip 9
Cipher Tag 5 15 60 138
Cipher wheel 6
Cipher wheel, tips for using 6
ciphers see “Names of individual ciphers”
Ciphers, definition 4
Ciphertext 4
Civil War, American 61
Clock arithmetic see “Modular arithmetic”
Cocks, Clifford 193
Code-O-Graph 7
COLOSSUS 143
Common factor see “Factor”
Composite number 76
Congruent 11
Congruent mod n 108 (see also “Modular arithmetic”)
Cryptography 3
Dancing Men 33
decrypting 4
Diffie, Whitfield 175 193
Divisibility, rules for 78—79
Doyle, Sir Arthur Conan 33
Ellis, James 193
encrypting 4
Enigma cipher 142—143
Equivalent 11
Equivalent mod n 108 (see also “Modular arithmetic”)
Exponents 80 167—171
Factor 75
Factor tree 76
Factor, common 82
Factor, greatest common 82
Factoring 75—83
Findley, Josh 165
frequencies 35—39
Frequencies of letters in English, alphabetical 41
Frequencies of letters in English, by frequency 39
Frequencies, definition 36
Frequencies, relative frequency 36
Frequency analysis, tips 48
Germaine, Sophie 163
GIMPS see “Great Internet Mersenne Prime Search”
Goldbach conjecture 164
Great Internet Mersenne Prime Search 164 165
Greatest common factor see “Factor”
Hellman, Martin 193
Holmes, Sherlock 33
International standard book number see “ISBN”
Inverses 133—142
Inverses, modular 135 137—138 183—187
Inverses, multiplicative 135 183
ISBN 121—122
Jefferson, Thomas 73 187
Key 21
Key, good and bad see “Multiplicative ciphers”
Key, public and private see “RSA cipher”
Keyword ciphers 29—32
Keyword ciphers, definition 30
Keyword ciphers, key letter 30
Keyword ciphers, keyword 30
leap years 120
Letter frequencies see “Frequencies”
Lewis and Clark 73 88—89
Linear equivalences, solving 148—150
Little Orphan Annie 7
Livingston, Robert A. 187
Madison, James 187
Mary Queen of Scots 50
Mersenne numbers 162
Mersenne numbers, primes 163
military time see “24-hour clock”
Modular arithmetic 103—111
Modular arithmetic, applications of 115—122
Modular arithmetic, calendar applications of 119
Modular arithmetic, definition 107
Modular arithmetic, reduce mod n 109
Modulus 107
Multiple 75
Multiplicative ciphers 125—131
Multiplicative ciphers, bad key 127
Multiplicative ciphers, cracking 138—142
Multiplicative ciphers, decrypting 133—142
Multiplicative ciphers, good key 127 129
Navajo Code Talkers 26
negative numbers 12—15
Nowak, Martin 165
one-time pad 98—99
Pass the Hat 9
Passwords 131 172
Plaintext 4
Poe, Edgar Allen 39
Powers see “Exponents”
Prime factorization 76
Prime numbers 76 155—165
Prime numbers, counting 161
Prime numbers, definition 76
Prime numbers, Mersenne primes 163
Prime numbers, Sophie Germaine primes 163
Prime numbers, testing shortcut 157
Prime numbers, twin primes 162
Public-key cryptography 176 (see also “RSA cipher”)
Public-key cryptography, British role 193
Reciprocal 135
Rejewski, Marian 143
Relative frequency see “Frequencies”
Relatively prime 128
Remainders, using a calculator to find 117—118
Rivest, Ronald 176 193
RSA cipher 155 175—181 189—193
RSA cipher, decrypting 180—181
RSA cipher, decryption key 180
RSA cipher, definition 176
RSA cipher, encrypting 178—179
RSA cipher, encryption key 177
RSA cipher, sending messages 189—193
Secret code 3
Shamir, Adi 176 193
Shift cipher see “Caesar ciphers”
Sieve of Eratosthenes 159
substitution ciphers 29—50
Substitution ciphers, cracking 41—50
Substitution ciphers, definition 29
The Mod Game 111
Turing, Alan 143
VENONA 99
Vigenere cipher 53—99
Vigenere cipher, cracking with known keylength 63—73
Vigenere cipher, cracking with unknown keylength 85—96
Vigenere cipher, decrypting 57—60
Vigenere cipher, definition 55
Vigenere cipher, keyword 55
Vigenere cipher, with numbers 60
Vigenere square 58—59
Waltmann, George 165
Williamson, Malcolm 193
World War I 112
World War II 26 142—143
Zimmermann telegram 112—113
“The Gold Bug” 39
Реклама