|
|
Результат поиска |
Поиск книг, содержащих: Quadratic reciprocity law
Книга | Страницы для поиска | Andrews G., Askey R., Roy R. — Special Functions | 53 | Dummit D.S., Foote R.M. — Abstract algebra | 819 | Nathanson M.B. — Elementary methods in number theory | 109 | Ribenboim P. — My numbers, my friends: popular lectures on number theory | 115, 140 | Rosenberg J. — Algebraic K-Theory and Its Applications | 4.4.10 | Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 158 | Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 107, 110, 111, 258 | Everest G., Ward T. — An Introduction to Number Theory | 67, 73, 81 | Kato K., Kurokawa N., Saito T. — Number Theory I. Fermat's Dream | 50, 52 | Cohen H.A. — A Course in Computational Algebraic Number Theory | 27 | Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 273, 286 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 393, 411, 414, 663 | Iwaniec H., Kowalski E. — Analytic number theory | 51 | Ionin Y.J., Shrikhande M.S. — Combinatorics of Symmetric Designs | 34 | Guy R.K. — Unsolved Problems in Number theory | F5 | Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 44 | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 377, 394, 396, 614 | Berg M.C. — The Fourier-Analytic Proof of Quadratic Reciprocity | xv, 2 ff | Li H., Gras G. — Class Field Theory: From Theory to Practice | 113, 217 | Knuth D.E. — The art of computer programming (vol. 1 Fundаmental algorithms) | 45 | Andrews G.E. — Number Theory | 113, 118—127, 228 | Goldstein L.J. — Analytic Number Theory | 106—107 | Swinnerton-Dyer H.P.F. — A brief guide to algebraic number theory | 61 | Weil A. — Number theory for beginners | 58 | Hazewinkel M. — Handbook of Algebra (часть 1) | 378 | Mignotte M., Stefanescu D. — Polynomials: An Algorithmic Approach | 178 | Swinnerton-Dyer H. P. F., Swinnerton-Dyer P. — A brief guide to algebraic number threory | 61 | Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 313, 315, 391, 392, 393 | Keith Devlin — Mathematics: The New Golden Age | 69, 193 |
|
|