|
|
Результат поиска |
Поиск книг, содержащих: Variational derivative
Книга | Страницы для поиска | Hunter J.K., Nachtergaele B. — Applied Analysis | 415 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 46.B | Olver P.J. — Equivalence, Invariants and Symmetry | 223 | Maugin G.A. — Material inhomogeneities in elasticity | 146 | Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 39, 313 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 553 | Ito K. — Encyclopedic Dictionary of Mathematics | 46.B | Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction | 312 | Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 320, 381 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | (see “Functional derivative”) | Schober G. — Univalent Functions - Selected Topics | 140 | D'Inverno R. — Introducing Einstein's Relatvity | 98 | Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 66 | Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 186 | Dickey L.A. — Soliton Equations and Hamiltonian Systems | 9 | Akhiezer A.I., Berestetskii V.B. — Quantum electrodynamics | 61 | Carroll R.W. — Mathematical physics | 26 | Richards P.I. — Manual of Mathematical Physics | 389 | Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 448 | Mathews J., Walker R.L. — Mathematical methods of physics | 324, 327, 328 | Faddeev L.D., Takhtajan L., Reyman A.G. — Hamiltonian methods in the theory of solitons | 13 | Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 81 | Silhavy M. — The Mechanics and Thermodynamics of Continuous Media | 218 | Anderson J.L. — Principles of Relativity Physics | 90 | Lemm J.C. — Bayesian field theory | 87, 116, see also "Functionnal derivative" | Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations | 264—266, 313, 315 | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 88, 148 | Guillemin V., Sternberg S. — Symplectic techniques in physics | 402 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 99 | Mathews J., Walker R.L. — Mathematical Methods of Physics | 324, 327, 328 |
|
|