| Книга | Страницы для поиска |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 471 |
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 156 |
| Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | (see under “Curvature, formalism of”) |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 327 |
| Maugin G.A. — Material inhomogeneities in elasticity | 57 |
| Petersen P. — Riemannian Geometry | 61 |
| O'Donnel P. — Introduction to 2-Spinors in General Relativity | 52, 94, 158, 162, 163 |
| Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 2 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 527 |
| Collins G.W. — Fundamentals of Stellar Astrophysics | 151 |
| Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments | 624 |
| Poisson E. — A relativists toolkit | see “Curvature tensors, Einstein” |
| Bleecker D. — Gauge Theory and Variational Principles | 127 |
| Stephani H. — Relativity: an introduction to special and general relativity | 174 |
| De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 116 |
| Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Curv ature” |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 214 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 263, 330 |
| Guggenheimer H.W. — Differential Geometry | 328 |
| Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 9, 64, |
| Ludvigsen M. — General relativity. A geometric approach | 91 |
| Overduin J.M., Wesson P.S. — Dark sky, dark matter | 92 |
| Visser M. — Lorentzian wormholes. From Einstein to Hawking | 19, 279 |
| D'Inverno R. — Introducing Einstein's Relatvity | 87, 90, 142, 143, 149, 176, 177, 187, 272, 282, 330 |
| Volovik G. — Artificial black holes | 19, 133, 160, 173 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 493 |
| Straumann N. — General relativity and relativistic astrophysics | 61, 130, 132 |
| Sachs R.K., Wu H. — General relativity for mathematicians | 18, 33, 35, 111, 180, 184 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 71—72 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 382 |
| Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 7 |
| Kleinert H. — Gauge fields in condensed matter (part 4) | 1345, 1351, 1360, 1362, 1390, 1410, 1441 |
| Ehlers J. (ed.) — Relativity theory and astrophysics. 1. Relativity and cosmology | 25 |
| Falcke H. (ed.), Hehl F.W. (ed.) — The galactic black hole: lectures on general relativity and astrophysics | 15, 183 |
| Weinberg S. — The Quantum Theory of Fields. Vol. 3 Supersymmetry | 326, 332 |
| Ehlers J. (ed.) — Relativity theory and astrophysics. Relativity and cosmology | 25 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 310, 315 |
| Synge J.L. — Relativity: The general theory | 17ff, 418 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 193 |
| Müller R. — Differential harnack inequalities and the ricci flow | 17 |
| Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 525, 538 |
| Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 14, 145 |
| Schutz B.F. — A first course in general relativity | 175, 271 |
| Anderson J.L. — Principles of Relativity Physics | 63 |
| Wald R.M. — General Relativity | 40—41 |
| Chandrasekhar S. — The Mathematical Theory of Black Holes | 31, see also "Einstein field-equations" |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 310, 315 |
| Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 79 |