Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Pfelzer, C.      624(125) 656
Phase factors      see also "Modulus-phase formalism"
Phase factors, canonical intersection, historical background      144—148
Phase factors, geometric phase theory, eigenvector evolution      13—17
Phase factors, molecular systems      205—214
Phase factors, molecular systems, experimental probing      248—249
Phase factors, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system      157—168
Phase factors, non-adiabatic coupling, theoretical background      43—44
Phase factors, observability      208
Phase factors, quantum theory      200
Phase-change rule      see "Longuet — Higgins phase-change rule"
Phase-inverting reactions, molecular model      496—499
Phase-inverting reactions, phase-change rule, pericyclic reactions      449—450
Phase-preserving reactions, phase-change rule, pericyclic reactions      449—450
Phillips, D.F.      249(316) 282
Phillips, J.      411(243) 431
Photochemistry, direct molecular dynamics, vibronic coupling      381—382
Photochemistry, future research issues      493—496
Photochemistry, loop construction      453—460
Photochemistry, loop construction, four-electron systems      455—458
Photochemistry, loop construction, larger four-electron systems      458—459
Photochemistry, loop construction, multielectron systems      459—460
Photochemistry, loop construction, qualitative analysis      472—482
Photochemistry, loop construction, qualitative analysis, ammonia      480—481
Photochemistry, loop construction, qualitative analysis, benzene derivatives      479—480
Photochemistry, loop construction, qualitative analysis, butadiene      474—479
Photochemistry, loop construction, qualitative analysis, cyclooctatetraene (COT)      482
Photochemistry, loop construction, qualitative analysis, cyclooctene isomerization      473—474
Photochemistry, loop construction, qualitative analysis, ethylene      472—473
Photochemistry, loop construction, qualitative analysis, inorganic complexes      481—482
Photochemistry, loop construction, quantitative analysis      482—487
Photochemistry, loop construction, three-electron systems      455
Photodissociation, direct molecular dynamics, nuclear motion Schroedinger equation      365—373
Photoelectron spectroscopy (PES), non-adiabatic coupling, Born — Oppenheimer — Huang equation      45
Photon capture, direct molecular dynamics, adiabatic systems, initial conditions      373—377
Piel, J.      410(240) 430
Pines, A.      3(13) 37 248(307) 281
Pires, M.V.      290(64) 321
Piskorz, P.      363(95) 426
Pistolesi, F.      210(168) 277
Pittner, J.      415(249) 431
Pitzer, R.      41(6) 138
Planar molecules, permutational symmetry, electronic wave function      681—682
Planar molecules, permutational symmetry, rotational wave function      685—687
Planar molecules, permutational symmetry, vibrational wave function      687—692
Ploehn, H.      506(4) 555
Podolsky method, Renner — Teller effect, triatomic molecules, Hamiltonian equations      612—615
Podolsky, B.      612(54) 655
Pogrebnya, S.K.      285(32) 320
Poincare sphere, phase properties      206
Point group symmetry, conical intersections, geometric phase theory      5—8
Point group symmetry, permutational symmetry, electronic wave function      681—682
Point group symmetry, permutational symmetry, group theoretical properties      669—674
Poisson equations, electronic states, adiabatic-to-diabatic transformation      296—300
Poisson equations, electronic states, adiabatic-to-diabatic transformation, two-state system      303—309
Poisson equations, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      708—711
Poizat, J.-P.      207(126) 276
Polanyi, M.      692(63) 740
Polar coordinates, electronic states, adiabatic-to-diabatic transformation, two-state system      303—309
Polar coordinates, non-adiabatic coupling, Jahn — Teller systems, Longuet — Higgins phase      119—122
Polar coordinates, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      154—155
Polar coordinates, non-adiabatic coupling, three-state molecular system      134—137
Polar coordinates, non-adiabatic coupling, two-state molecular system, single conical intersection solution      98—101
Polar coordinates, permutational symmetry, degenerate/near-degenerate vibrational levels      730—733
Polinger, V.Z.      33(45) 38 201(47) 209(47) 233(47 275—276) 247(47) 274 280 666(41) 739
Pollak, E.      213(225—226) 279
Pollard, J.E.      625(136) 657
Pollinger, V.Z.      461(71) 502
Poluyanov, L.      640—641(169) 658
Polyene molecules, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique      409—410
Polyene molecules, direct molecular dynamics, semiempirical studies      414—415
Polyene molecules, phase-change rule, pericyclic reactions      448—450
Pomelli, C.      363(95) 426
Popescu, S.      4(18) 16(18) 27—28(18) 37 42(63) 122(63) 140 204(81) 232(264) 275 280
Pople — Longuet — Higgins model, Renner — Teller effect, tetraatomic molecules      629—631
Pople — Longuet — Higgins model, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      633
Pople — Longuet — Higgins model, Renner — Teller effect, triatomic molecules      616—618
Pople, J.A.      41(5) 138 349(54) 353 363(95) 381(169) 426 429 615—616(69) 617(71) 629(69) 633(69) 655
Popper, K.R.      212(212) 279
Porter, R.N.      144(11) 194 728(94) 741
Poshusta, R.D.      439(34) 446(34) 474(43) 501
Potential energy surface (PES), conical intersection, nonadiabatic coupling      148
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements      517—542
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives      527—542
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, first-order derivatives      529—535
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, second-order derivatives      535—542
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, normalization factor      517
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, nuclei interaction terms      519—527
Potential energy surface (PES), crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, overlap integrals      518—519
Potential energy surface (PES), crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation      542—550
Potential energy surface (PES), crude Born — Oppenheimer approximation, theoretical background      506—507
Potential energy surface (PES), direct molecular dynamics, adiabatic systems      362—381
Potential energy surface (PES), direct molecular dynamics, adiabatic systems, Gaussian wavepacket propagation      377—381
Potential energy surface (PES), direct molecular dynamics, adiabatic systems, initial condition selection      373—377
Potential energy surface (PES), direct molecular dynamics, adiabatic systems, nuclear Schroedinger equation      363—373
Potential energy surface (PES), direct molecular dynamics, Gaussian wavepackets and multiple spawning      399—402
Potential energy surface (PES), direct molecular dynamics, molecular mechanics valence bond (MMVB)      408—411
Potential energy surface (PES), direct molecular dynamics, nuclear motion Schroedinger equation      419—420
Potential energy surface (PES), direct molecular dynamics, theoretical background      356—362
Potential energy surface (PES), direct molecular dynamics, trajectory surface hopping      397—399
Potential energy surface (PES), direct molecular dynamics, vibronic coupling      382—393
Potential energy surface (PES), electron nuclear dynamics (END), structure and properties      325—327
Potential energy surface (PES), electron nuclear dynamics (END), theoretical background      324—325
Potential energy surface (PES), electronic states, adiabatic representation, Born — Huang expansion      286—289
Potential energy surface (PES), electronic states, adiabatic representation, first-derivative coupling matrix      290—291
Potential energy surface (PES), electronic states, adiabatic representation, nuclear motion Schroedinger equation      289—290
Potential energy surface (PES), electronic states, adiabatic representation, second-derivative coupling matrix      291—292
Potential energy surface (PES), electronic states, adiabatic-to-diabatic transformation, diabatic nuclear motion Schroedinger equation      293—295
Potential energy surface (PES), electronic states, adiabatic-to-diabatic transformation, diabatization matrix      295—300
Potential energy surface (PES), electronic states, adiabatic-to-diabatic transformation, electronically diabatic representation      292—293
Potential energy surface (PES), electronic states, adiabatic-to-diabatic transformation, two-state application      300—309
Potential energy surface (PES), electronic states, theoretical background      283—286
Potential energy surface (PES), electronic states, triatomic reactions, two-state formalism      309—319
Potential energy surface (PES), electronic states, triatomic reactions, two-state formalism, partial wave expansion      312—317
Potential energy surface (PES), electronic states, triatomic reactions, two-state formalism, propagation scheme and asymptotic analysis      317—318
Potential energy surface (PES), electronic states, triatomic reactions, two-state formalism, symmetrized hyperspherical coordinates      310—312
Potential energy surface (PES), non-adiabatic coupling, extended Born — Oppenheimer equations      170—171
Potential energy surface (PES), non-adiabatic coupling, Longuet — Higgins phase-based treatment      155—157
Potential energy surface (PES), permutational symmetry, ${}^2S$ systems      692—694
Potential energy surface (PES), permutational symmetry, format      737—738
Potential energy surface (PES), Renner — Teller effect, theoretical principles      585—586
Potential fluid dynamics, molecular systems, modulus-phase formalism, quantum mechanics and      265—266
Pothier, H.      248(314) 282
Poutsma, J.C.      341(41) 353
Pragmatic models, Renner — Teller effect, triatomic molecules      618—621
Pratt, S.T.      625(137—138) 657
Press, W.H.      330(22) 352
Preston, R.K.      41(3) 49(3) 82(3) 104(3) 134(3) 138 147(61) 195 326(10) 345(10) 352 397(201) 429 719(89) 741
Probability densities, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      705—711
Projection operators, geometric phase theory, eigenvector evolution      16—17
Projective Hilbert space, Berry’s phase      209—210
Prony analysis, electron nuclear dynamics (END), molecular systems      344—349
Propagation techniques, electronic states, triatomic quantum reaction dynamics      317—318
Pryce, M.H.L.      2—3(2) 9(2) 18—20(2) 31(2) 36 41—42(14) 53(14) 106(14) 121(14) 139 145(36) 195
Pseudomagnetic fields, degenerate states chemistry      x—xiii
Pseudomagnetic fields, non-adiabatic coupling, curl equation      95—96
Pseudomagnetic fields, non-adiabatic coupling, vector potential, Yang — Mills field      94—95
Pseudoparticles, direct molecular dynamics, nuclear motion Schroedinger equation      371—373
Pseudoparticles, direct molecular dynamics, trajectory “swarms”      421—422
Pseudorotation, electronic states, quantum reaction dynamics      284—286
Pseudorotation, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      702—711
Pseudoscalar term, multidegenerate nonlinearity, off-diagonal elements, squaring-off      246
Pulay, P.      372(123 127) 427
Pump-probe techniques, molecular systems      211
Puzzarini, C.      624(130) 657
Quadratic coupling, geometric phase theory, Jahn — Teller effect      22—23
Quantal adiabatic phase, geometric phase theory      2
Quantal adiabatic phase, quantum theory      199—200
Quantization, degenerate states chemistry      x—xiii
Quantization, non-adiabatic coupling, curl condition, pseudomagnetic field      96
Quantization, non-adiabatic coupling, extended Born — Oppenheimer equations      171—173
Quantization, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state systems      173—174
Quantization, non-adiabatic coupling, future research applications      118—119
Quantization, non-adiabatic coupling, general case techniques      63—67
Quantization, non-adiabatic coupling, model systems      57—63
Quantization, non-adiabatic coupling, model systems, extensions      62—63
Quantization, non-adiabatic coupling, model systems, four-state case      60—62
Quantization, non-adiabatic coupling, model systems, three-state case      59—60
Quantization, non-adiabatic coupling, model systems, two-state system      58—59
Quantization, non-adiabatic coupling, theoretical background      41—44
Quantum chemistry, direct molecular dynamics      416
Quantum correction, molecular systems, modulus-phase formalism      264—265
Quantum dressed classical mechanics, non-adiabatic coupling      177—183
Quantum dressed classical mechanics, non-adiabatic coupling, geometric phase effect      180—183
Quantum dressed classical mechanics, non-adiabatic coupling, theoretical background      177—180
Quantum measurements, component amplitude analysis, phase-modulus relations, phase losses      218
Quantum mechanics, adiabatic molecular dynamics, theoretical background      362—363
Quantum mechanics, molecular systems, modulus-phase formalism, potential fluid dynamics and      265—266
Quantum numbers, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      702—711
Quantum numbers, Renner — Teller effect, nonlinear molecules      607—610
Quantum numbers, Renner — Teller effect, triatomic molecules      592—598
Quantum reaction dynamics, electronic states, adiabatic representation, Born — Huang expansion      286—289
Quantum reaction dynamics, electronic states, adiabatic representation, first-derivative coupling matrix      290—291
Quantum reaction dynamics, electronic states, adiabatic representation, nuclear motion Schroedinger equation      289—290
Quantum reaction dynamics, electronic states, adiabatic representation, second-derivative coupling matrix      291—292
Quantum reaction dynamics, electronic states, adiabatic-to-diabatic transformation, diabatic nuclear motion Schroedinger equation      293—295
Quantum reaction dynamics, electronic states, adiabatic-to-diabatic transformation, diabatization matrix      295—300
Quantum reaction dynamics, electronic states, adiabatic-to-diabatic transformation, electronically diabatic representation      292—293
Quantum reaction dynamics, electronic states, adiabatic-to-diabatic transformation, two-state application      300—309
Quantum reaction dynamics, electronic states, theoretical background      283—286
Quantum reaction dynamics, electronic states, triatomic reactions, two-state formalism      309—319
Quantum reaction dynamics, electronic states, triatomic reactions, two-state formalism, partial wave expansion      312—317
Quantum reaction dynamics, electronic states, triatomic reactions, two-state formalism, propagation scheme and asymptotic analysis      317—318
Quantum reaction dynamics, electronic states, triatomic reactions, two-state formalism, symmetrized hyperspherical coordinates      310—312
Quantum theory, molecular systems      198—205
Quasi — Jahn — Teller model, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      150—155
Quasiclassical trajectory (QCT) calculation, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system, $D+H_2$ reaction      160—163
Quasiclassical trajectory (QCT) calculation, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system, $H+D_2$ reaction      167—168
Quasidiabatic framework, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, line integral approach      53—57
Quenneville, J.      361(88) 414(88) 426 491(123) 503
Raab, A.      365(109) 381(109) 390(109) 393(109) 427
Rabitz, H.      211(182) 278 326(8) 352
Rabuck, A.D.      363(95) 426
Racah coefficients, multidegenerate nonlinear coupling, higher order coupling      243
Radazos, I.N.      234(279) 281
Radic-Peric, J.      586(18) 590(28) 599—600(28) 602(28) 604(28) 621(18) 626(18) 628(18) 631(18) 634(18) 646(18 173) 654
Radom, L.      381(169) 429
Ragazos, I.      358(42) 408(237) 425 430 479—480(92) 491(117) 502—503
Raghavachari, K.      363(95) 426
Raimond, J.M.      200(20) 273
Raimondi, M.      448(50) 501
Rakhecha, V.C.      207(123—124) 208(124) 248(123) 276
Ramachandran, G.N.      206(114) 276
Ramanujam, P.S.      208(139) 277
Ramaseshan, S.      206(114) 276
Ramsay, D.A.      585(9—10) 615(9—10) 624(107) 633(162) 653 656—657
Ramsey, N.F.      200(24) 273
Rao, K.V.S.R.      458(63) 487(63) 501
Raseev, G.      41(51) 140 242(295) 281
Rauch, M.      210(170) 278
Rauschenbeutel, A.      200(20) 273
Rayleigh, J.W.S.      206(111) 276
Reactive collisions, electron nuclear dynamics (END), molecular systems      338—342
Reactive collisions, electron nuclear dynamics (END), molecular systems, final-state analysis      343—349
Reactive double-slit model (RDSM), non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      150—155
Reactive transitions, non-adiabatic coupling, extended Born — Oppenheimer equations      175—177
Rechenberg, H.      199(2) 215(2) 217(2) 263(2) 273
Reciprocal relations, molecular systems, component amplitude analysis, cyclic wave functions      225—228
Reciprocal relations, molecular systems, component amplitude analysis, modulus-phase formalism      215
Reciprocal relations, molecular systems, component amplitude analysis, origins      215—217
Reciprocal relations, molecular systems, component amplitude analysis, theoretical consequences      232—233
Reciprocal relations, wave function analycity      201—205
Reck, M.      207(129) 276
Reference configuration, permutational symmetry      737—738
Reference configuration, Renner — Teller effect, triatomic molecules      614—615
Regge poles, molecular systems, phase properties      214
Rehfuss, B.D.      625(147) 657
Reinsch, E.-A.      622(92) 656
Relativistic states, conical intersections, spin-orbit interaction, future research issues      578—580
Relativistic states, conical intersections, spin-orbit interaction, seam loci      573—574
Relativistic states, molecular systems, modulus-phase formalism      262—263
Rembovsky, Yu.A.      208(140 142) 277
Remler, D.      360(73) 425
Renner effect, historical background      584—585
Renner parameter, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      632—633 635—640
Renner parameter, Renner — Teller effect, tetraatomic molecules, perturbative handling      642—646
Renner parameter, Renner — Teller effect, triatomic molecules, vibronic/spin-orbit coupling      600—605
Renner — Teller effect, degenerate states chemistry      xiii
Renner — Teller effect, historical background      584—585
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling      243—248
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling, complex representation      243—244
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling, generalized coupling      247
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling, interpretation      248
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling, nonlinear diagonal elements      247
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling, off-diagonal coupling      246—247
Renner — Teller effect, multidegenerate nonlinear coupling, higher order coupling, off-diagonal squaring      245—246
Renner — Teller effect, non-adiabatic coupling, topological spin insertion      70—73
Renner — Teller effect, nonadiabatic coupling, two-state molecular system      59
Renner — Teller effect, tetraatomic molecules, $\Pi$-electronic states, ABBA molecules      631—633
Renner — Teller effect, tetraatomic molecules, $\Pi$-electronic states, HCCS radical      633—640
Renner — Teller effect, tetraatomic molecules, $\Pi$-electronic states, perturbative handling      641—646
Renner — Teller effect, tetraatomic molecules, delta electronic states, perturbative handling      647—653
Renner — Teller effect, tetraatomic molecules, theoretical principles      625—633
Renner — Teller effect, tetraatomic molecules, theoretical principles, Hamiltonian equation      626—628
Renner — Teller effect, tetraatomic molecules, theoretical principles, vibronic problem      628—631
Renner — Teller effect, theoretical principles      585—586
Renner — Teller effect, triatomic molecules, benchmark handling      621—623
Renner — Teller effect, triatomic molecules, effective Hamiltonians      623—624
Renner — Teller effect, triatomic molecules, Hamiltonian equations      610—615
Renner — Teller effect, triatomic molecules, minimal models      615—618
Renner — Teller effect, triatomic molecules, multi-state effects      624
Renner — Teller effect, triatomic molecules, pragmatic models      618—621
Renner — Teller effect, triatomic molecules, spectroscopic properties      598—610
Renner — Teller effect, triatomic molecules, spectroscopic properties, linear molecules, singlet state vibronic coupling      598—600
Renner — Teller effect, triatomic molecules, spectroscopic properties, linear molecules, vibronic/spin-orbit coupling      600—605
Renner — Teller effect, triatomic molecules, spectroscopic properties, nonlinear molecules      606—610
Renner — Teller effect, triatomic molecules, theoretical principles      587—598
Renner, R.      2(9) 37 59(83) 68(83) 141 584(7) 597(7) 615(7) 653
Replogle, E.S.      363(95) 426
Requena, A.      661(35) 739
Resta, R.      215(240) 218(240 247) 280
Restricted open-shell Hartree-Fock (ROHF) procedure      415
Restriction equations, molecular systems, component amplitude analysis, reciprocal relations      215—217
Reuter, W.      621(87) 624(122) 655—656
Reutt, J.E.      625(136) 657
Reznik, B.      210(177) 232(264) 278 280
Richard, J.-M.      506(10) 555
Rico, R.J.      460(67) 502
Riedle, E.      410(240) 430
Rieke, C.A.      349(60) 353
Riera, A.      41(47—48) 67(91) 82(47—48) 140—141 284(18—19) 320 385(183) 429
Rimini, A.      200(21) 273
Rinen, K.D.      286(56) 321
Robb, Bernardi, and Olivucci (RBO) method, conical intersection location      489—490
Robb, M.A.      234(279) 281 357(6—7) 358(38 42—43) 359(49—52 63—64) 360(79—87) 363(95) 381(6—7) 405(230) 406(63—64 233) 407(79 237) 408(80—82) 409(83—84) 410(85—86 230) 411—412(87) 424—426 430 434(9) 446(37—38) 447(44) 450(44) 479(89 92) 480(92) 489(37 114—115) 490(9 37—38 116) 491(117) 494—496(44) 500—503 558(6) 580
Roesslein, M.      625(147) 657
Rohrlich, D.      4(18) 16(18) 27—28(18) 37 42(63) 122(63) 140 204(81) 206(117) 210(117) 275—276
Rojas, A.      67(91) 141
Romelt, J.      290(63) 321
Romero, T.      82(107) 141
Roncero, O.      364(105) 427
Roos, B.      358(37 39—41) 363(97) 424 427 472(80) 484(99) 502—503 622(98) 656
Rose, M.E.      89(109) 91—92(109) 141
Rosen, N.      284(7) 320
Rosmus, P.      481(93) 502 612(51) 621(88) 622(51 88 92—95 97 99—101) 623(94) 655—656
Ross, A.J.      624(111) 656
Ross, G.      208(150) 277
Ross, I.G.      381(172) 429
Rossi, A.R.      458(60) 487(60) 501
Rotational couplings, electron nuclear dynamics (END), final-state analysis      348—349
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå