Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Nitzan, A.      360(69) 425
Noel, M.W.      200(25) 211(25) 273
Nogues, G.      200(20) 273
Noh, J.W.      207(130) 276
Noid, D.      371(122) 374(134) 427—428
Noll, M.      345(46) 346—347(50) 353
Non-Abelian theory, molecular systems, Yang — Mills fields, nuclear Lagrangean      250
Non-Abelian theory, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields      250—253
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity      123—126
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, derivation      47—48
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, historical background      40—44
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, line integral approach      50—57
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, line integral approach, quasidiabatic framework      53—57
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, line integral approach, single-valued diabatic potentials and topological matrix      50—53
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, orthogonality      122—123
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, quantization      63—67
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, single/multivaluedness      126—132
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, solution conditions      48—50
Non-adiabatic coupling, adiabatic-to-diabatic transformation matrix analyticity, Wigner rotation matrix and      89—92
Non-adiabatic coupling, conical intersections, Born — Oppenheimer approximation, matrix elements      186—191
Non-adiabatic coupling, conical intersections, coordinate origin removal      137—138
Non-adiabatic coupling, conical intersections, extended Born — Oppenheimer equations, closed path matrix quantization      171—173
Non-adiabatic coupling, conical intersections, extended Born — Oppenheimer equations, theoretical principles      144—148
Non-adiabatic coupling, conical intersections, extended Born — Oppenheimer equations, three-state matrix quantization      173—174
Non-adiabatic coupling, conical intersections, extended Born — Oppenheimer equations, three-state system analysis      174—175
Non-adiabatic coupling, conical intersections, Herzberg — Longuet — Higgins phase-based treatment, Jahn — Teller model      185—186
Non-adiabatic coupling, conical intersections, Jahn — Teller systems, Longuet — Higgins phase      119—122
Non-adiabatic coupling, conical intersections, Longuet — Higgins phase-based treatment      148—168
Non-adiabatic coupling, conical intersections, Longuet — Higgins phase-based treatment, geometric phase effect, two-dimensional two-surface system      148—157
Non-adiabatic coupling, conical intersections, Longuet — Higgins phase-based treatment, three-particle reactive system      157—168
Non-adiabatic coupling, conical intersections, quantum dressed classical mechanics      177—183
Non-adiabatic coupling, conical intersections, quantum dressed classical mechanics, geometric phase effect      180—183
Non-adiabatic coupling, conical intersections, vector potential formulation      191—196
Non-adiabatic coupling, curl condition, Yang — Mills field      92—97
Non-adiabatic coupling, curl condition, Yang — Mills field, pseudomagnetic field      95—96
Non-adiabatic coupling, curl condition, Yang — Mills field, vector potential theory      93—95
Non-adiabatic coupling, diabatic potential matrix, minimal conditions      81—89
Non-adiabatic coupling, diabatic potential matrix, minimal conditions, noninteracting conical intersections      85—89
Non-adiabatic coupling, diabatic representation      132—134
Non-adiabatic coupling, direct molecular dynamics, ab initio multiple spawning      411—414
Non-adiabatic coupling, direct molecular dynamics, CASSCF techniques      404—411
Non-adiabatic coupling, direct molecular dynamics, CASSCF techniques, direct dynamics      410—411
Non-adiabatic coupling, direct molecular dynamics, CASSCF techniques, MMVB method      406—410
Non-adiabatic coupling, direct molecular dynamics, Ehrenfest dynamics      395—397
Non-adiabatic coupling, direct molecular dynamics, Gaussian wavepackets and multiple spawning      399—402
Non-adiabatic coupling, direct molecular dynamics, mixed techniques      403—404
Non-adiabatic coupling, direct molecular dynamics, semiempirical studies      414—415
Non-adiabatic coupling, direct molecular dynamics, theoretical background      356—362
Non-adiabatic coupling, direct molecular dynamics, trajectory surface hopping      397—399
Non-adiabatic coupling, direct molecular dynamics, vibronic effects      381—393
Non-adiabatic coupling, direct molecular dynamics, vibronic effects, adiabatic properties      382—384
Non-adiabatic coupling, direct molecular dynamics, vibronic effects, conical intersections      386—389
Non-adiabatic coupling, direct molecular dynamics, vibronic effects, diabatic properties      384—386
Non-adiabatic coupling, direct molecular dynamics, vibronic effects, Hamiltonian model      389—393
Non-adiabatic coupling, geometric phase theory      2—3
Non-adiabatic coupling, geometric phase theory, sign flip interpretation      77—80
Non-adiabatic coupling, historical background      40—44
Non-adiabatic coupling, Jahn — Teller model, Longuet — Higgins phase      119—122
Non-adiabatic coupling, molecular systems      203—205
Non-adiabatic coupling, molecular systems, Yang — Mills fields, nuclear Lagrangean      249—250
Non-adiabatic coupling, multidegenerate case      80—81
Non-adiabatic coupling, nuclear motion Schroedinger equation, principles of      419—420
Non-adiabatic coupling, permutational symmetry      711
Non-adiabatic coupling, quantization, general case techniques      63—67
Non-adiabatic coupling, quantization, model systems      57—63
Non-adiabatic coupling, quantization, model systems, extensions      62—63
Non-adiabatic coupling, quantization, model systems, four-state case      60—62
Non-adiabatic coupling, quantization, model systems, three-state case      59—60
Non-adiabatic coupling, quantization, model systems, two-state system      58—59
Non-adiabatic coupling, sub-Hilbert space construction      67—69
Non-adiabatic coupling, sub-sub-Hilbert space construction      69—70
Non-adiabatic coupling, theoretic-numerical approach, three-state system in plane      101—103
Non-adiabatic coupling, theoretic-numerical approach, two-state system in plane, conical intersection distribution solution      101
Non-adiabatic coupling, theoretic-numerical approach, two-state system in plane, single conical intersection solution      97—101
Non-adiabatic coupling, three-state molecular systems, numerical study      134—137
Non-adiabatic coupling, three-state molecular systems, sign flip derivation      73—77
Non-adiabatic coupling, three-state molecular systems, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      113—117
Non-adiabatic coupling, three-state molecular systems, theoretic-numerical in plane      101—103
Non-adiabatic coupling, topological spin      70—73
Non-adiabatic coupling, two-state molecular systems, $C_2H$-molecule: (1, 2) and (2, 3) conical intersections, “real” two-state systems      109—112
Non-adiabatic coupling, two-state molecular systems, $H_3$ system and isotopic analogues, “real” systems      103—109
Non-adiabatic coupling, two-state molecular systems, theoretic-numerical approach, in-plane systems, conical intersection distribution solution      101
Non-adiabatic coupling, two-state molecular systems, theoretic-numerical approach, in-plane systems, single conical intersection solution      97—101
Noncrossing rule, geometric phase theory      2
Nondemolition measurements, phase interference      207
Nonella, M.      366(118) 427
Nonlinear coupling, multidegenerate conditions, higher order coupling, complex representations      243—244
Nonlinear coupling, multidegenerate conditions, molecular systems      233—249
Nonlinear coupling, multidegenerate conditions, molecular systems, adiabatic-to-diabatic transformation      241—242
Nonlinear coupling, multidegenerate conditions, molecular systems, component phase continuous tracing      236—241
Nonlinear coupling, multidegenerate conditions, molecular systems, conical intersection pairing      235—236
Nonlinear coupling, multidegenerate conditions, molecular systems, direct integration      242—243
Nonlinear coupling, multidegenerate conditions, molecular systems, experimental phase probing      248—249
Nonlinear coupling, multidegenerate conditions, molecular systems, Jahn — Teller/Renner — Teller coupling effects      243—248
Nonlinear coupling, multidegenerate conditions, molecular systems, Jahn — Teller/Renner — Teller coupling effects, complex representation      243—244
Nonlinear coupling, multidegenerate conditions, molecular systems, Jahn — Teller/Renner — Teller coupling effects, generalized Renner — Teller coupling      247
Nonlinear coupling, multidegenerate conditions, molecular systems, Jahn — Teller/Renner — Teller coupling effects, off-diagonal coupling      246—247
Nonlinear coupling, multidegenerate conditions, molecular systems, Jahn — Teller/Renner — Teller coupling effects, off-diagonal element squaring      245—246
Nonlinear molecules, permutational symmetry, electronic wave function      681—682
Nonlinear molecules, permutational symmetry, static Jahn — Teller effect      696—698
Nonlinear molecules, permutational symmetry, vibrational wave function      688—692
Nonlinear molecules, Renner — Teller effect      606—610
Nonrelativistic states, conical intersections, spin-orbit interaction, seam loci      573—574
Nonrelativistic states, molecular systems, modulus-phase formalism, electron configuration      263—265
Nonrelativistic states, molecular systems, modulus-phase formalism, nearly nonrelativistic limit      268—269
Nonrelativistic states, molecular systems, modulus-phase formalism, theoretical background      262—263
Nonremovable couplings, electronic states, adiabatic-to-diabatic transformation, two-state systems      301—309
Nonvanishing matrix elements, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation      546—550
Normalization factor, angular-momentum-adopted Gaussian matrix elements, crude Born — Oppenheimer approximation      517
Nourbakhsh, S.      82(96) 118(96) 141
Nuclear dynamics      see also "Quantum reaction dynamics"
Nuclear dynamics, electron nuclear dynamics (END), time-dependent variational principle (TDVP), general reactions      334—337
Nuclear dynamics, geometric phase theory, quadratic Jahn — Teller effect      22—23
Nuclear dynamics, geometric phase theory, single-surface nuclear dynamics      23—31
Nuclear dynamics, geometric phase theory, single-surface nuclear dynamics, molecular Aharonov — Bohm effect, vector-potential theory      25—31
Nuclear dynamics, geometric phase theory, single-surface nuclear dynamics, vibronic multiplet ordering      24—25
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, ${}^1H_3$ isotopomers      713—717
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, alkali metal trimers      712—713
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, dynamic Jahn — Teller and geometric phase effects      698—711
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, electron/nuclear spin effects      711—712
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, nonadiabatic coupling effects      711
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, potential energy surfaces      692—694
Nuclear dynamics, permutational symmetry, ${}^2S$ systems, static Jahn — Teller effect      694—698
Nuclear dynamics, permutational symmetry, adiabatic states, conical intersections, invariant operators      735—737
Nuclear dynamics, permutational symmetry, adiabatic states, conical intersections, Jahn — Teller theorem      733—735
Nuclear dynamics, permutational symmetry, antilinear operator properties      721—723
Nuclear dynamics, permutational symmetry, degenerate states chemistry      xiii
Nuclear dynamics, permutational symmetry, degenerate/near-degenerate vibration levels      728—733
Nuclear dynamics, permutational symmetry, electronic wave function      680—682
Nuclear dynamics, permutational symmetry, energy functional form      737—738
Nuclear dynamics, permutational symmetry, GBO approximation and geometric phase, two-dimensional Hilbert space model      718—721
Nuclear dynamics, permutational symmetry, geometric phase theory, single-surface nuclear dynamics      30—31
Nuclear dynamics, permutational symmetry, group theoretical issues      668—674
Nuclear dynamics, permutational symmetry, nuclear spin function      678—682
Nuclear dynamics, permutational symmetry, phase-change rule      451—453
Nuclear dynamics, permutational symmetry, rotational wave function      683—687
Nuclear dynamics, permutational symmetry, rovibronic/vibronic wave functions      682—683
Nuclear dynamics, permutational symmetry, theoretical background      660—661
Nuclear dynamics, permutational symmetry, time-dependent Schroedinger equation      723—728
Nuclear dynamics, permutational symmetry, total molecular wave function      661—668 674—678
Nuclear dynamics, permutational symmetry, vibrational wave function      687—692
Nuclear Lagrangean equation, molecular systems, Yang — Mills fields      249—250 255—257
Nuclear motion Schroedinger equation, direct molecular dynamics      363—373
Nuclear motion Schroedinger equation, direct molecular dynamics, vibronic coupling, adiabatic effects      382—384
Nuclear motion Schroedinger equation, electronic states, adiabatic representation      289—290
Nuclear motion Schroedinger equation, electronic states, adiabatic-to-diabatic transformation      293—295
Nuclear motion Schroedinger equation, electronic states, adiabatic-to-diabatic transformation, diabatization matrix      296—300
Nuclear motion Schroedinger equation, electronic states, diabatic representation      292—293
Nuclear motion Schroedinger equation, electronic states, triatomic quantum reaction dynamics, partial wave expansion      313—317
Nuclear motion Schroedinger equation, principles of      417—420
Nuclear spin function, permutational symmetry      678—680 711—712
Nuclei subsystems, permutational symmetry, total molecular wave function      677—678
Nugent, K.A.      207(125) 217(125) 276
Nyman, G.      285(30) 320
Ochterski, J.      363(95) 426
Oehrn, Y.      325(1—4) 328(20) 332(24) 333(4) 337(25—26) 338(25 27—30) 339(27) 344—345(42—43) 348(51) 349(4) 351—352
Off-diagonal elements, adiabatic-to-diabatic transformation matrix, quantization      67
Off-diagonal elements, conical intersection location      488—489
Off-diagonal elements, multidegenerate nonlinearity, generalized coupling      246—247
Off-diagonal elements, multidegenerate nonlinearity, squaring-off method      245—246
Off-diagonal elements, permutational symmetry, total molecular wave function      666—668
Ohmine, I.      434(6) 472(6) 491(122) 500 503
Oka, T.      625(147) 657
Olivucci, M.      234(279) 281 357(6—7) 358(42) 359(49—52 63—64) 360(79—87) 381(6—7) 405(230) 406(63—64) 407(79 237) 408(80—82) 409(83—84) 410(85—86 230) 411—412(87) 424—426 430 434(9) 479(89 92) 480(92) 490(9) 500 502 446(37—38) 489(37 114) 490(37—38 116) 491(117) 501 503
Olsen, J.      363(97) 427
On-the-fly molecular dynamics      see "Direct molecular dynamics"
One-dimensional representations, conical intersections, spin-orbit coupling      558—559
One-dimensional representations, Renner — Teller effect, theoretical principles      585—586
One-dimensional representations, Renner — Teller effect, triatomic molecules, pragmatic models      620—621
Oosterhoff correlation diagram, conical intersection research      494—496
Oosterhoff, L.J.      438(31—32) 448(47) 450(47) 494(47) 500—501
Open-path phase, molecular systems, multidegenerate nonlinear coupling      242—243
Open-path phase, properties      210
Operator definitions, phase properties      206—207
Opik, U.      2—3(2) 9(2) 18—20(2) 31(2) 36 41—42(14) 53(14) 106(14) 121(14) 139 145(36) 195
Oppenheimer, J.R.      40(1) 82(1) 138 144(16) 194 202(62) 274 283(1) 319 506—507(5) 555 584(6) 653 662(38) 667(38) 739
Optical phases, properties      206—207
Orbital overlap mechanism, phase-change rule, chemical reactions      450—453
Oreiro, J.      338(30) 352
Orloff, D.      349(60) 353
Orloff, H.      349(60) 353
Orthogonal transformation matrix, conical intersections, spin-orbit interaction, invariant parameters      574—576
Orthogonal transformation matrix, conical intersections, spin-orbit interaction, seam loci      576—578
Orthogonal transformation matrix, molecular systems      204—205
Orthogonal transformation matrix, non-adiabatic coupling, adiabatic-to-diabatic transformation      122—123
Orthogonal transformation matrix, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      151—155
Orthogonal transformation matrix, non-adiabatic coupling, two-state molecular system, $H_3$ molecule      104—109
Orthonormalization, electron nuclear dynamics (END), molecular systems, final-state analysis      343—349
Orthonormalization, permutational symmetry, GBO approximation/geometric phase, Hilbert space model      719—721
Ortiz, J.V.      363(95) 426
Osmann, G.      583(2) 586(2) 604(2) 623(2 104—105) 653 656
Osnaghi, S.      200(20) 273
Ostojic, B.      586(18) 621(18) 625(144) 626(18 144 150 153) 627(144) 628(18 153) 630(144) 631(18 150 153) 634(18 153) 638(144) 641(150 153) 646(18 153) 647(150) 654 657
Ottani, S.      446(38) 490(38) 501
Out-of-phase states, conical intersection, two-state systems      438
Out-of-phase states, loop construction, benzene molecules      479—481
Out-of-phase states, phase inverting reactions      496—499
Out-of-phase states, phase-change rule, pericyclic reactions      448—450
Out-of-phase states, quantitative photochemical analysis      485—487
Overlap integrals, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements      518—519
Ozimba, P.A.      213(235) 279
O’Brien, M.C.M.      33(46) 38 209(164) 233(268 276) 277 280
O’Connell, R.      375(140) 428
O’Raifeartaigh, L.      42(59) 93(59) 140
Pacher, T.      41(38 41) 47(41) 82(106) 139 141 144(25 30) 195 202—203(49) 242(49 297) 274 285(44—45) 301(44—45) 321 383(179) 385(179) 419(179) 429
Pack, R.T.      29(40) 31(40) 37 284(17) 286(69) 320—321 660(18) 668(52) 739—740
Paddon-Row, M.N.      376(144) 399(214) 414(144 214) 428 430
Paganin, A.      207(125) 217(125) 276
Page, M.      460(67) 502
Pairing approximation, phase inverting reactions      499
Pais, A.C.C.      693(69—70) 699(69—70) 740
Paley, R.A.E.C.      219(248) 280
Palivan, H.      619(84) 655
Palma, A.      719(91) 741
Palmer, I.      407(237) 430
Palmer, I.J.      479—480(92) 502
Palmieri, P.      622(99) 624(130) 656—657
Pancharatnam phase, properties      206
Pancharatnam, S.      206(113) 276
Panten, D.      622(101) 656
Papanikolas, J.M.      204(89) 208(89) 211(89) 275
Papousek, D.      624(127—128) 657
Parabolical insertions, non-adiabatic coupling, topological spin      70—73
Parallel transported eigenstates, geometric phase theory      10—11
Parinello, M.      215(238) 218(238) 279 327(18) 352 360(70—72 76) 425—426
Park, J.L.      212(219) 279
Parravicini, G.P.      247(305) 281
Partial wave expansion, electronic states, triatomic quantum reaction dynamics      312—317
Pati, A.K.      200(11 14) 210(11 14) 242(11 14) 270(11) 273
Pauli principle, conical intersections, phase-change rule, chemical reaction      446—453
Pauli principle, conical intersections, phase-change rule, chemical reaction, pericyclic reactions      447—450
Pauli principle, conical intersections, phase-change rule, chemical reaction, pi-bond reactions      452—453
Pauli principle, conical intersections, phase-change rule, chemical reaction, sigma bond reactions      452
Pauli principle, conical intersections, two-state chemical reactions      436—438
Pauli principle, degenerate states chemistry      xii—xiii
Pauli principle, loop construction, coodinate properties      443—446
Pauli principle, permutational symmetry, rotational wave function      685—687
Pauli spin matrices, geometric phase theory, eigenvector evolution      14—17
Pauli, W.      205(104) 263(104) 276 597(22) 654
Pauling, L.      435(15) 499(141) 500 504
Peasly, K.      358(38) 424
Peat, F.D.      209(151) 277
Pegg — Barnett operators, phase properties      207—208
Pegg, D.T.      208(138 141) 277
Peiponen, K.E.      208(148) 277
Pellisier, M.      385(186) 429
Peng, C.Y.      363(95) 426
Percival, I.C.      212(206) 279
Perel’man, N.F.      200(15) 201(40) 212(15 199) 213(227—228) 215(243—244) 273—274 278—280
Perez-Mercader, J.      212(216) 279
Peric, M.      82(105) 109(105) 141 202(51) 234(278) 274 281 586(16—18) 590(28—29) 594(20—21) 599—600(28—29) 602(28—29) 604(28) 606(33—34) 610(16—17) 612(56) 620(16—17 21 86) 621(17 21 86—87) 622(16—17) 623(33) 624(20 112—113 117—126) 625(140—145) 626(18 141—145 148—154) 627(144) 628(18 153) 630(144) 631(18 145 149—150 153) 634(18 152—153) 635(152) 638(144 152) 641(150 153 170—171) 646(18 153 172—173) 647(149—150) 654—658
Pericyclic reactions, phase-change rule      447—450
Permutational symmetry, ${}^2S$ systems, ${}^1H_3$ isotopomers      713—717
Permutational symmetry, ${}^2S$ systems, alkali metal trimers      712—713
Permutational symmetry, ${}^2S$ systems, dynamic Jahn — Teller and geometric phase effects      698—711
Permutational symmetry, ${}^2S$ systems, electron/nuclear spin effects      711—712
Permutational symmetry, ${}^2S$ systems, nonadiabatic coupling effects      711
Permutational symmetry, ${}^2S$ systems, potential energy surfaces      692—694
Permutational symmetry, ${}^2S$ systems, static Jahn — Teller effect      694—698
Permutational symmetry, adiabatic states, conical intersections, invariant operators      735—737
Permutational symmetry, adiabatic states, conical intersections, Jahn — Teller theorem      733—735
Permutational symmetry, antilinear operator properties      721—723
Permutational symmetry, degenerate states chemistry      xiii
Permutational symmetry, degenerate/near-degenerate vibration levels      728—733
Permutational symmetry, electronic wave function      680—682
Permutational symmetry, energy functional form      737—738
Permutational symmetry, GBO approximation and geometric phase, two-dimensional Hilbert space model      718—721
Permutational symmetry, geometric phase theory, single-surface nuclear dynamics      30—31
Permutational symmetry, group theoretical issues      668—674
Permutational symmetry, nuclear spin function      678—680
Permutational symmetry, phase-change rule      451—453
Permutational symmetry, rotational wave function      683—687
Permutational symmetry, rovibronic/vibronic wave functions      682—683
Permutational symmetry, theoretical background      660—661
Permutational symmetry, time-dependent Schroedinger equation      723—728
Permutational symmetry, total molecular wave function      661—668 674—678
Permutational symmetry, vibrational wave function      687—692
Persico, M.      385(185) 403(225—226) 429—430 491(119) 503
Persson, J.      622(98) 656
Perturbation theory, conical intersections, location      488—489
Perturbation theory, conical intersections, spin-orbit interaction      559 561—563
Perturbation theory, conical intersections, time-reversal symmetry      563—564
Perturbation theory, crude Born — Oppenheimer approximation, basic principles      510—512
Perturbation theory, electronic states, quantum reaction dynamics      285—286
Perturbation theory, non-adiabatic coupling, two-state molecular system, single conical intersection solution      97—101
Perturbation theory, permutational symmetry, total molecular wave function      665—668
Perturbation theory, Renner — Teller effect, tetraatomic molecules, $\delta$ electronic states      647—653
Perturbation theory, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      641—646
Perturbation theory, Renner — Teller effect, triatomic molecules, minimal models      615—618
Peshkin, M.      209(153 155) 277
Peskin, M.E.      203—204(69) 212(218) 250(69) 275 279
Peslherbe, G.      356(2) 372(2) 423
Petelin — Kiselev (PK) model, Renner — Teller effect, tetraatomic molecules      625—633
Petelin — Kiselev (PK) model, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      634—640
Petelin, A.N.      625(132) 632(132) 634(132) 641(132) 646(132) 657
Peterson, K.      41(6) 138
Petersson, G.A.      363(95) 426
Petrongolo, C.      41(42—43) 82(52—53) 140 144(28) 195 290(63) 321 491(119) 503 640(168) 658
Pettitt, B.      359(59) 425
Peyerimhoff, S.D.      82(105) 109(105) 141 144(28) 195 202(51) 234(278) 274 281 290(63) 321 406(235) 430 455(56) 501 586(16—17) 594(20—21) 597(23) 606(33) 610(16—17) 612(56) 620(16—17 21 86) 621(21 86—87) 622(16—17) 624(20 112—113 115 117—124) 625(140—142) 626(141—142 148 152 154) 634—635(152) 638(152) 641(170—171) 654—658
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå