Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Conical intersections, non-adiabatic coupling, quantum dressed classical mechanics      177—183
Conical intersections, non-adiabatic coupling, quantum dressed classical mechanics, geometric phase effect      180—183
Conical intersections, non-adiabatic coupling, sign flips, geometrical interpretation      77—80
Conical intersections, non-adiabatic coupling, three-state molecular system      102—103
Conical intersections, non-adiabatic coupling, three-state molecular system, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      113—117
Conical intersections, non-adiabatic coupling, two-state molecular system, $C_2H$-molecule: (1, 2) and (2, 3) conical intersections      109—112
Conical intersections, non-adiabatic coupling, two-state molecular system, distribution solution      101
Conical intersections, non-adiabatic coupling, two-state molecular system, single conical intersection solution      97—101
Conical intersections, non-adiabatic coupling, vector potential formulation      191—196
Conical intersections, orthogonal coordinates      565—567
Conical intersections, permutational symmetry, adiabatic states, invariant operators      735—737
Conical intersections, permutational symmetry, adiabatic states, Jahn — Teller theorem      733—735
Conical intersections, phase inverting reactions      496—499
Conical intersections, phase-change rule, chemical reaction      446—453
Conical intersections, phase-change rule, chemical reaction, pericyclic reactions      447—450
Conical intersections, phase-change rule, chemical reaction, pi-bond reactions      452—453
Conical intersections, phase-change rule, chemical reaction, sigma bond reactions      452
Conical intersections, phase-change rule, comparison with other techniques      487—493
Conical intersections, phase-change rule, loop construction      443—446
Conical intersections, phase-change rule, loop construction, coordinate properties      443—446
Conical intersections, spin-orbit interaction, derivative couplings      569—570
Conical intersections, spin-orbit interaction, electronic Hamiltonian      559
Conical intersections, spin-orbit interaction, future research issues      578—580
Conical intersections, spin-orbit interaction, location      564—565
Conical intersections, spin-orbit interaction, numerical calculations      571—578
Conical intersections, spin-orbit interaction, numerical calculations, $H_2+OH 1, 2^2A'$ and $1^2A'$ states      571—572
Conical intersections, spin-orbit interaction, numerical calculations, convergence equations      572
Conical intersections, spin-orbit interaction, numerical calculations, orthogonality properties      576—578
Conical intersections, spin-orbit interaction, numerical calculations, seam parameters, conical parameters and invariant      574—576
Conical intersections, spin-orbit interaction, numerical calculations, seam parameters, locus      572—574
Conical intersections, spin-orbit interaction, orthogonal intersection adapted coordinates      565—567
Conical intersections, spin-orbit interaction, perturbation theory      561—564
Conical intersections, spin-orbit interaction, research background      558—559
Conical intersections, spin-orbit interaction, time-reversal symmetry      559—561 563—564
Conical intersections, spin-orbit interaction, topography, conical parameters      569
Conical intersections, spin-orbit interaction, topography, energy parameters      568—569
Conical intersections, spin-orbit interaction, transformational invariant      567
Connor, J.N.L.      285(40) 321 339(34) 352
Continuity equation, molecular systems, component amplitude analysis, phase-modulus relations      217—218
Continuity equation, molecular systems, modulus-phase formalism      262—263
Continuous tracing, molecular systems, multidegenerate nonlinear coupling      236—241
Convergence, conical intersections, spin-orbit interaction      572—573
Cool, T.A.      472(79) 502
Cooley, J.W.      619(76) 655
Cooper, D.L.      448(50) 501
Coquart, B.      633(163) 658
Coriolis term, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system      159—168
Cornelisse, J.      493(126) 503
Correction terms, molecular systems, modulus-phase formalism, Lagrangean density      269—270
Correlation functions, direct molecular dynamics, adiabatic systems      374—377
Cossi, M.      363(95) 426
Costa de Beauregard, O.      212(214) 279
Coulomb interaction, crude Born — Oppenheimer approximation, basic principles      507—512
Coulomb interaction, crude Born — Oppenheimer approximation, derivative properties      527—542
Coulomb interaction, crude Born — Oppenheimer approximation, derivative properties, first-order derivatives      529—535
Coulomb interaction, crude Born — Oppenheimer approximation, derivative properties, second-order derivatives      535—542
Coulomb interaction, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation      515—516
Coulomb interaction, crude Born — Oppenheimer approximation, nuclei interaction integrals      519—527
Coulomb interaction, crude Born — Oppenheimer approximation, theoretical background      507
Coulomb interaction, diabatic framework      133—134
Coulomb interaction, electronic state adiabatic representation, Born — Huang expansion      287—289
Coulomb interaction, permutational symmetry, potential energy surfaces      692—694
Coulomb interaction, phase inverting reactions      499
Coupled-perturbed multiconfiguration self-consistent field (CP-MCSCF) technique, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      406—411
Coupling matrices, electronic state adiabatic representation, first-derivative matrix      290—291
Coupling matrices, electronic state adiabatic representation, second-derivative matrix      291—292
Covariant elements, molecular systems, modulus-phase formalism, Dirac theory electrons      267—268
Covariant elements, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields      250—252
Craig, D.P.      448(46) 451(46) 501
Crofton, M.W.      625(147) 657
Cromwell, E.V.      458(61—62) 460(61—62) 487(61—62) 501
Cross, P.C.      610(40) 654
Cross-sectional analysis, electron nuclear dynamics (END), molecular systems      345—349
Crozet, P.      624(111) 656
Crude Born — Oppenheimer approximation, degenerate states chemistry      xiii
Crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation      512—516
Crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation      542—550
Crude Born — Oppenheimer approximation, integrals      551—555
Crude Born — Oppenheimer approximation, molecular systems, Yang — Mills fields      260—261
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements      517—542
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives      527—542
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, first-order derivatives      529—535
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, second-order derivatives      535—542
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, normalization factor      517
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, nuclei interaction terms      519—527
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, overlap integrals      518—519
Crude Born — Oppenheimer approximation, potential energy surface (PES), theoretical background      506—507
Crude Born — Oppenheimer approximation, principles and equations      507—512
Cuccaro, S.A.      318(92) 322
Cui, Q.      363(95) 426
Curl condition, degenerate states chemistry      x—xiii
Curl condition, electronic states, adiabatic representation      291
Curl condition, electronic states, adiabatic-to-diabatic transformation      297—300
Curl condition, geometric phase theory, eigenvector evolution      13—17
Curl condition, molecular systems, Yang — Mills fields, properties      252—253
Curl condition, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields      250—252
Curl condition, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework      53 56—57
Curl condition, non-adiabatic coupling, conical intersection coordinates      137—138
Curl condition, non-adiabatic coupling, future research applications      118—119
Curl condition, non-adiabatic coupling, pseudomagnetic field      95—96
Curl condition, non-adiabatic coupling, theoretical background      42—44
Curl condition, non-adiabatic coupling, three-state molecular system      102—103
Curl condition, non-adiabatic coupling, two-state molecular system, single conical intersection solution      97—101
Curl condition, non-adiabatic coupling, Yang — Mills field      92—97
Curl condition, non-adiabatic coupling, Yang — Mills field, pseudomagnetic field      95—96
Curl condition, non-adiabatic coupling, Yang — Mills field, vector potential theory      93—95
Curl condition, Yang — Mills field      203—205
Curl, R.F.      624(116) 656
Curtis, P.R.      339(34) 352
Curtiss, C.F.      284(16) 320
Cutler, P.H.      213(233) 279
Cyanine dyes, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique      411
Cyclic wave functions, molecular systems, component amplitude analysis      224—228
Cyclobutadiene(CBD)-tetrahedrane system, loop construction      476—478
Cyclooctatetraene (COT)semibullvalene (SB) photorearrangement, loop construction      482—483
Cyclooctenes, loop construction, isomerization      473—474
Cyclopentadienyl cation (CPDC), phase-change rule      467—472
Cyclopentadienyl radical (CPDR), Longuet — Higgins phase-change rule, loop construction      464—467
Dachsel, H.      363(99) 427
Dai, J.Q.      285(31) 320
Daniels, A.      360(75) 363(95) 426
Danovich, D.      449(51) 501
Dapprich, S.      363(95) 426
Davidson, E.R.      464(72) 467—468(72) 502
Davidson, J.      33(42) 38
Davison, B.      219(249) 280
Davydov, A.S.      212(210) 279 315(89) 322
DCCS radical, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      633—640
De Araujo, L.E.E.      204(96) 211(96) 275
De Feyter, S.      434(4) 458(64) 487(64) 500—501
De Prony, B.      344(44) 353
de Vivie-Riedl, R.      211(182) 278
Debu, P.      213(231) 279
Decius, E.B.      610(40) 654
Deegan, M.J.0.      41(6) 138
Degenerate states, permutational symmetry, vibrational levels      728—733
Degenerate states, theoretical background      ix—xiii
Dehmer, J.L.      625(137—138) 657
Dehmer, P.M.      625(137—138) 657
Delacretaz, G.      3(16) 20(16) 32(16) 37 707(78) 740
Delves, L.M.      286(60—61) 310(60—61) 321
Demkov technique, non-adiabatic coupling, sub/sub-sub-Hilbert construction      67—70
Demkov, Yu.N.      67(93) 141
Demtroder, W.      3(17) 20(17) 37 248(310) 281
Dennison, D.M.      661(29) 679(29) 739
Density functional theory, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      404—411
Density operator, direct molecular dynamics, adiabatic systems      375—377
Derivative couplings, conical intersections      569—570
Derivative couplings, direct molecular dynamics, vibronic coupling, conical intersections      386—389
Desouter-Lecomte, M.      290(64) 321
Determinantal wave function, electron nuclear dynamics (END), molecular systems, final-state analysis      342—349
Deumal, M.      360(82) 408(82) 426
Deumens, E.      325(2—4) 328(20) 332(24) 333(4) 337(25—26) 338(25 27—30) 339(27) 344—345(42—43) 348(51) 349(4) 351—353
Dev, V.      3(17) 20(17) 37 248(310) 281
Devoret, M.H.      248(314) 282
Dewar, M.J.S.      435(19) 447(42—43) 448—449(19) 451(43) 460(68) 493(19) 500—502
Diabatic representation, conical intersection location      489
Diabatic representation, defined      41—42
Diabatic representation, degenerate states chemistry      x—xiii
Diabatic representation, direct molecular dynamics, vibronic coupling      384—386
Diabatic representation, electronic states, adiabatic-to-diabatic transformation      292—293
Diabatic representation, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework      54—56
Diabatic representation, non-adiabatic coupling, future research applications      118—119
Diabatic representation, non-adiabatic coupling, minimal diabatic potential matrix      82—89
Diabatic representation, non-adiabatic coupling, theoretical background      41—44
Diabatic representation, properties and equations      132—134
Diabatic representation, Renner — Teller effect, triatomic molecules      595—598
Diabatization matrix, electronic states, adiabatic-to-diabatic transformation      295—300
Diagonal element, adiabatic-to-diabatic transformation matrix, quantization      67
Diagonal element, molecular systems, multidegenerate nonlinear coupling      247
Diatomics-in-molecule (DIM) surfaces, electron nuclear dynamics (END), molecular systems      345—349
Diatomics-in-molecule (DIM) surfaces, permutational symmetry, nuclear spin function      679—680
Diau, E.W.-G.      434(4) 458(64) 487(64) 500—501
Dick, Bernhard      476(87) 502
Diels — Alder reaction, phase-change rule, pericyclic reactions      447—450
Dimensionless parameters, Renner — Teller effect, tetraatomic molecules, perturbative handling      642—646
Dirac $\delta$ function, non-adiabatic coupling, curl condition, pseudomagnetic field      95—96
Dirac bra-ket notation, permutational symmetry, group theoretical properties      672—674
Dirac theory, molecular systems, modulus-phase formalism, electron properties      266—268
Dirac theory, molecular systems, modulus-phase formalism, topological phase electrons      270—272
Dirac, P.A.M.      43(77) 140 199(4) 200(7) 207(134) 213(134) 263(134) 273 277
Direct integration, molecular systems, multidegenerate nonlinear coupling      242—243
Direct molecular dynamics, adiabatic systems      362—381
Direct molecular dynamics, adiabatic systems, Gaussian wavepacket propagation      377—381
Direct molecular dynamics, adiabatic systems, initial condition selection      373—377
Direct molecular dynamics, adiabatic systems, nuclear Schroedinger equation      363—373
Direct molecular dynamics, electron nuclear dynamics (END), structure and properties      327
Direct molecular dynamics, future research issues      415—417
Direct molecular dynamics, non-adiabatic coupling, ab initio multiple spawning      411—414
Direct molecular dynamics, non-adiabatic coupling, CASSCF techniques      404—411
Direct molecular dynamics, non-adiabatic coupling, CASSCF techniques, direct dynamics      410—411
Direct molecular dynamics, non-adiabatic coupling, CASSCF techniques, MMVB method      406—410
Direct molecular dynamics, non-adiabatic coupling, Ehrenfest dynamics      395—397
Direct molecular dynamics, non-adiabatic coupling, Gaussian wavepackets and multiple spawning      399—402
Direct molecular dynamics, non-adiabatic coupling, mixed techniques      403—404
Direct molecular dynamics, non-adiabatic coupling, semiempirical studies      414—415
Direct molecular dynamics, non-adiabatic coupling, theoretical background      356—362
Direct molecular dynamics, non-adiabatic coupling, trajectory surface hopping      397—399
Direct molecular dynamics, non-adiabatic coupling, vibronic effects      381—393
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, adiabatic properties      382—384
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, conical intersections      386—389
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, diabatic properties      384—386
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, Hamiltonian model      389—393
Direct molecular dynamics, nuclear motion Schroedinger equation, principles of      418—420
Dirichlet conditions, electronic states, adiabatic-to-diabatic transformation, two-state system      304—309
Discrete Fourier transform (DFT), non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      153—155
Discrete variable representation (DVR), direct molecular dynamics, nuclear motion Schroedinger equation      364—373
Discrete variable representation (DVR), non-adiabatic coupling, quantum dressed classical mechanics      177—183
Discrete variable representation (DVR), non-adiabatic coupling, quantum dressed classical mechanics, formulation      181—183
Discrete variable representation (DVR), permutational symmetry, dynamic Jahn — Teller and geometric phase effects      699—711
DiVicenzo, D.      249(317) 282
Dixon, R.N.      211(186) 248(186) 278 357(16) 364(16) 424 608(35) 617(35) 618(74) 619(77—78) 654—655
Dixon’s model, Renner — Teller effect, triatomic molecules      617—618
Diz, A.      325(2 4) 333(4) 339(4) 344—345(42—43) 351—353
DMBE III calculation, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      699—711
Dobbyn, A.J.      285(40) 321 660(17) 739
Dodonov, V.V.      230—232(262) 280
Domcke, W.      41(37 42) 82(42) 139 144(26) 195 242(296) 281 285(38) 321 356(1) 360(65) 381(161 170 173—174) 382(1 65) 384(1 65) 385(187) 389(65) 391(65) 393(170 173—174) 395(1) 423 425 428—429 434(7) 479—480(92) 488(111) 491(7 111 118) 500 502—503 506(1 4) 555 586(13—14) 591(13) 598(13—14) 624(13—14 114) 653 656
Donoso, A.      357(21) 424
Doscher, M.      393(194) 429
Double degeneracy, geometric phase theory, Jahn — Teller models      2—4 31—33
Doubleday, C.      460(67) 502
Dressier, K.      585(9—10) 615(9—10) 653
Dreyer, J.      479—480(92) 502
Du, M.      211(184) 278
Dubbens, D.      248(306) 281
Dubois, I.      619(76) 655
Duch, W.      145(39—40) 195
Dultz, W.      206(115—116) 276
Dunn, J.I.      233(276) 280
Dunn, T.J.      204(88) 211(88) 275
Dupuis, M.      363(96) 426 515(15—16) 553(15—16) 555
Dutton, Z.      249(315) 282
Duxbury, G.      586(11) 618(74) 619(77—85) 653 655
Dyall, K.G.      580(38) 581
Dynamic phase, properties      210
D’mello, M.      145(47) 150(47) 164(47) 167(80 86) 195—196
Eaton, D.R.      481(94) 502
Ebata, T.      341(40) 353
Eberly, J.H.      212(198) 278
Eckart conditions, Renner — Teller effect, triatomic molecules      610—615
Eckart, C.      610(38) 654
Eckel, H.-E.      248(310) 281
Eckel, H.A.      3(17) 20(17) 37
Ehrenburg, W.      209(152) 277
Ehrenfest dynamics, direct molecular dynamics, error sources      403—404
Ehrenfest dynamics, direct molecular dynamics, Gaussian wavepacket propagation      378—383
Ehrenfest dynamics, direct molecular dynamics, molecular mechanics valence bond (MMVB)      409—411
Ehrenfest dynamics, direct molecular dynamics, non-adiabatic coupling      395—397
Ehrenfest dynamics, direct molecular dynamics, theoretical background      358—361
Ehrenfest dynamics, direct molecular dynamics, wave function propagation      422—423
Ehrenfest, P.      422(252) 431
Eigenstates, electronic states, triatomic quantum reaction dynamics, partial wave expansion      315— 317
Eigenstates, geometric phase theory, adiabatic eigenstates, conical intersections      8—11
Eigenstates, geometric phase theory, linear Jahn — Teller effect      18—20
Eigenstates, geometric phase theory, spin-orbit coupling      21—22
Elbert, S.T.      41(6) 138 363(96) 426 438(33) 487(33) 500 558(5) 580
Electromagnetic theory, geometric phase theory, single-surface nuclear dynamics, vector- potential, molecular Aharonovo — Bohm effect      26—31
Electron nuclear dynamics (END), degenerate states chemistry      xii—xiii
Electron nuclear dynamics (END), direct molecular dynamics, structure and properties      327
Electron nuclear dynamics (END), molecular systems      337—351
Electron nuclear dynamics (END), molecular systems, final-state analysis      342—349
Electron nuclear dynamics (END), molecular systems, intramolecular electron transfer      349—351
Electron nuclear dynamics (END), molecular systems, reactive collisions      338—342
Electron nuclear dynamics (END), structural properties      325—327
Electron nuclear dynamics (END), theoretical background      323—325
Electron nuclear dynamics (END), time-dependent variational principle (TDVP)      327—337
Electron nuclear dynamics (END), time-dependent variational principle (TDVP), basic ansatz      330—333
Electron nuclear dynamics (END), time-dependent variational principle (TDVP), free electrons      333—334
Electron nuclear dynamics (END), time-dependent variational principle (TDVP), general electron structure      334—337
Electron properties, molecular systems, modulus-phase formalism, Dirac theory      266—268
Electron properties, molecular systems, modulus-phase formalism, nonrelativistic states      263—265
Electron spin, permutational symmetry      711—712
Electron transfer, direct molecular dynamics      415
Electron transfer, electron nuclear dynamics (END), intramolecular transfer      349—351
Electron transfer, electron nuclear dynamics (END), molecular systems      348—349
Electronic Hamiltonian, conical intersections, spin-orbit interaction      559
Electronic states, adiabatic representation, Born — Huang expansion      286—289
Electronic states, adiabatic representation, first-derivative coupling matrix      290—291
Electronic states, adiabatic representation, nuclear motion Schroedinger equation      289—290
Electronic states, adiabatic representation, second-derivative coupling matrix      291—292
Electronic states, adiabatic-to-diabatic transformation, diabatic nuclear motion Schroedinger equation      293—295
Electronic states, adiabatic-to-diabatic transformation, diabatization matrix      295—300
Electronic states, adiabatic-to-diabatic transformation, electronically diabatic representation      292—293
Electronic states, adiabatic-to-diabatic transformation, two-state application      300—309
Electronic states, four-state molecular system, non-adiabatic coupling, quantization      60—62
Electronic states, four-state molecular system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices      92
Electronic states, molecular systems, theoretical background      198—205
Electronic states, quantum reaction dynamics, theoretical background      283—286
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism      309—319
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism, partial wave expansion      312—317
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism, propagation scheme and asymptotic analysis      317—318
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism, symmetrized hyperspherical coordinates      310—312
Electronic states, quantum theory and      198—205
Electronic states, three-state molecular system, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting conical intersections      81— 89
Electronic states, three-state molecular system, non-adiabatic coupling, numerical study      134—137
Electronic states, three-state molecular system, non-adiabatic coupling, numerical study, extended Born — Oppenheimer equations      174—175
Electronic states, three-state molecular system, non-adiabatic coupling, quantization      59—60
Electronic states, three-state molecular system, non-adiabatic coupling, quantization, extended Born — Oppenheimer equations      173—174
Electronic states, three-state molecular system, non-adiabatic coupling, sign flip derivation      73—77
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå