Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Àâòîðû: Michael Baer, Gert D.Billing
Àííîòàöèÿ: Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.
This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.
Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 05.08.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Conical intersections, non-adiabatic coupling, quantum dressed classical mechanics 177—183
Conical intersections, non-adiabatic coupling, quantum dressed classical mechanics, geometric phase effect 180—183
Conical intersections, non-adiabatic coupling, sign flips, geometrical interpretation 77—80
Conical intersections, non-adiabatic coupling, three-state molecular system 102—103
Conical intersections, non-adiabatic coupling, three-state molecular system, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems 113—117
Conical intersections, non-adiabatic coupling, two-state molecular system, -molecule: (1, 2) and (2, 3) conical intersections 109—112
Conical intersections, non-adiabatic coupling, two-state molecular system, distribution solution 101
Conical intersections, non-adiabatic coupling, two-state molecular system, single conical intersection solution 97—101
Conical intersections, non-adiabatic coupling, vector potential formulation 191—196
Conical intersections, orthogonal coordinates 565—567
Conical intersections, permutational symmetry, adiabatic states, invariant operators 735—737
Conical intersections, permutational symmetry, adiabatic states, Jahn — Teller theorem 733—735
Conical intersections, phase inverting reactions 496—499
Conical intersections, phase-change rule, chemical reaction 446—453
Conical intersections, phase-change rule, chemical reaction, pericyclic reactions 447—450
Conical intersections, phase-change rule, chemical reaction, pi-bond reactions 452—453
Conical intersections, phase-change rule, chemical reaction, sigma bond reactions 452
Conical intersections, phase-change rule, comparison with other techniques 487—493
Conical intersections, phase-change rule, loop construction 443—446
Conical intersections, phase-change rule, loop construction, coordinate properties 443—446
Conical intersections, spin-orbit interaction, derivative couplings 569—570
Conical intersections, spin-orbit interaction, electronic Hamiltonian 559
Conical intersections, spin-orbit interaction, future research issues 578—580
Conical intersections, spin-orbit interaction, location 564—565
Conical intersections, spin-orbit interaction, numerical calculations 571—578
Conical intersections, spin-orbit interaction, numerical calculations, and states 571—572
Conical intersections, spin-orbit interaction, numerical calculations, convergence equations 572
Conical intersections, spin-orbit interaction, numerical calculations, orthogonality properties 576—578
Conical intersections, spin-orbit interaction, numerical calculations, seam parameters, conical parameters and invariant 574—576
Conical intersections, spin-orbit interaction, numerical calculations, seam parameters, locus 572—574
Conical intersections, spin-orbit interaction, orthogonal intersection adapted coordinates 565—567
Conical intersections, spin-orbit interaction, perturbation theory 561—564
Conical intersections, spin-orbit interaction, research background 558—559
Conical intersections, spin-orbit interaction, time-reversal symmetry 559—561 563—564
Conical intersections, spin-orbit interaction, topography, conical parameters 569
Conical intersections, spin-orbit interaction, topography, energy parameters 568—569
Conical intersections, spin-orbit interaction, transformational invariant 567
Connor, J.N.L. 285(40) 321 339(34) 352
Continuity equation, molecular systems, component amplitude analysis, phase-modulus relations 217—218
Continuity equation, molecular systems, modulus-phase formalism 262—263
Continuous tracing, molecular systems, multidegenerate nonlinear coupling 236—241
Convergence, conical intersections, spin-orbit interaction 572—573
Cool, T.A. 472(79) 502
Cooley, J.W. 619(76) 655
Cooper, D.L. 448(50) 501
Coquart, B. 633(163) 658
Coriolis term, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system 159—168
Cornelisse, J. 493(126) 503
Correction terms, molecular systems, modulus-phase formalism, Lagrangean density 269—270
Correlation functions, direct molecular dynamics, adiabatic systems 374—377
Cossi, M. 363(95) 426
Costa de Beauregard, O. 212(214) 279
Coulomb interaction, crude Born — Oppenheimer approximation, basic principles 507—512
Coulomb interaction, crude Born — Oppenheimer approximation, derivative properties 527—542
Coulomb interaction, crude Born — Oppenheimer approximation, derivative properties, first-order derivatives 529—535
Coulomb interaction, crude Born — Oppenheimer approximation, derivative properties, second-order derivatives 535—542
Coulomb interaction, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation 515—516
Coulomb interaction, crude Born — Oppenheimer approximation, nuclei interaction integrals 519—527
Coulomb interaction, crude Born — Oppenheimer approximation, theoretical background 507
Coulomb interaction, diabatic framework 133—134
Coulomb interaction, electronic state adiabatic representation, Born — Huang expansion 287—289
Coulomb interaction, permutational symmetry, potential energy surfaces 692—694
Coulomb interaction, phase inverting reactions 499
Coupled-perturbed multiconfiguration self-consistent field (CP-MCSCF) technique, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 406—411
Coupling matrices, electronic state adiabatic representation, first-derivative matrix 290—291
Coupling matrices, electronic state adiabatic representation, second-derivative matrix 291—292
Covariant elements, molecular systems, modulus-phase formalism, Dirac theory electrons 267—268
Covariant elements, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields 250—252
Craig, D.P. 448(46) 451(46) 501
Crofton, M.W. 625(147) 657
Cromwell, E.V. 458(61—62) 460(61—62) 487(61—62) 501
Cross, P.C. 610(40) 654
Cross-sectional analysis, electron nuclear dynamics (END), molecular systems 345—349
Crozet, P. 624(111) 656
Crude Born — Oppenheimer approximation, degenerate states chemistry xiii
Crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation 512—516
Crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation 542—550
Crude Born — Oppenheimer approximation, integrals 551—555
Crude Born — Oppenheimer approximation, molecular systems, Yang — Mills fields 260—261
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements 517—542
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives 527—542
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, first-order derivatives 529—535
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, second-order derivatives 535—542
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, normalization factor 517
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, nuclei interaction terms 519—527
Crude Born — Oppenheimer approximation, potential energy surface (PES), angular-momentum-adopted Gaussian matrix elements, overlap integrals 518—519
Crude Born — Oppenheimer approximation, potential energy surface (PES), theoretical background 506—507
Crude Born — Oppenheimer approximation, principles and equations 507—512
Cuccaro, S.A. 318(92) 322
Cui, Q. 363(95) 426
Curl condition, degenerate states chemistry x—xiii
Curl condition, electronic states, adiabatic representation 291
Curl condition, electronic states, adiabatic-to-diabatic transformation 297—300
Curl condition, geometric phase theory, eigenvector evolution 13—17
Curl condition, molecular systems, Yang — Mills fields, properties 252—253
Curl condition, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields 250—252
Curl condition, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework 53 56—57
Curl condition, non-adiabatic coupling, conical intersection coordinates 137—138
Curl condition, non-adiabatic coupling, future research applications 118—119
Curl condition, non-adiabatic coupling, pseudomagnetic field 95—96
Curl condition, non-adiabatic coupling, theoretical background 42—44
Curl condition, non-adiabatic coupling, three-state molecular system 102—103
Curl condition, non-adiabatic coupling, two-state molecular system, single conical intersection solution 97—101
Curl condition, non-adiabatic coupling, Yang — Mills field 92—97
Curl condition, non-adiabatic coupling, Yang — Mills field, pseudomagnetic field 95—96
Curl condition, non-adiabatic coupling, Yang — Mills field, vector potential theory 93—95
Curl condition, Yang — Mills field 203—205
Curl, R.F. 624(116) 656
Curtis, P.R. 339(34) 352
Curtiss, C.F. 284(16) 320
Cutler, P.H. 213(233) 279
Cyanine dyes, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique 411
Cyclic wave functions, molecular systems, component amplitude analysis 224—228
Cyclobutadiene(CBD)-tetrahedrane system, loop construction 476—478
Cyclooctatetraene (COT)semibullvalene (SB) photorearrangement, loop construction 482—483
Cyclooctenes, loop construction, isomerization 473—474
Cyclopentadienyl cation (CPDC), phase-change rule 467—472
Cyclopentadienyl radical (CPDR), Longuet — Higgins phase-change rule, loop construction 464—467
Dachsel, H. 363(99) 427
Dai, J.Q. 285(31) 320
Daniels, A. 360(75) 363(95) 426
Danovich, D. 449(51) 501
Dapprich, S. 363(95) 426
Davidson, E.R. 464(72) 467—468(72) 502
Davidson, J. 33(42) 38
Davison, B. 219(249) 280
Davydov, A.S. 212(210) 279 315(89) 322
DCCS radical, Renner — Teller effect, tetraatomic molecules, electronic states 633—640
De Araujo, L.E.E. 204(96) 211(96) 275
De Feyter, S. 434(4) 458(64) 487(64) 500—501
De Prony, B. 344(44) 353
de Vivie-Riedl, R. 211(182) 278
Debu, P. 213(231) 279
Decius, E.B. 610(40) 654
Deegan, M.J.0. 41(6) 138
Degenerate states, permutational symmetry, vibrational levels 728—733
Degenerate states, theoretical background ix—xiii
Dehmer, J.L. 625(137—138) 657
Dehmer, P.M. 625(137—138) 657
Delacretaz, G. 3(16) 20(16) 32(16) 37 707(78) 740
Delves, L.M. 286(60—61) 310(60—61) 321
Demkov technique, non-adiabatic coupling, sub/sub-sub-Hilbert construction 67—70
Demkov, Yu.N. 67(93) 141
Demtroder, W. 3(17) 20(17) 37 248(310) 281
Dennison, D.M. 661(29) 679(29) 739
Density functional theory, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 404—411
Density operator, direct molecular dynamics, adiabatic systems 375—377
Derivative couplings, conical intersections 569—570
Derivative couplings, direct molecular dynamics, vibronic coupling, conical intersections 386—389
Desouter-Lecomte, M. 290(64) 321
Determinantal wave function, electron nuclear dynamics (END), molecular systems, final-state analysis 342—349
Deumal, M. 360(82) 408(82) 426
Deumens, E. 325(2—4) 328(20) 332(24) 333(4) 337(25—26) 338(25 27—30) 339(27) 344—345(42—43) 348(51) 349(4) 351—353
Dev, V. 3(17) 20(17) 37 248(310) 281
Devoret, M.H. 248(314) 282
Dewar, M.J.S. 435(19) 447(42—43) 448—449(19) 451(43) 460(68) 493(19) 500—502
Diabatic representation, conical intersection location 489
Diabatic representation, defined 41—42
Diabatic representation, degenerate states chemistry x—xiii
Diabatic representation, direct molecular dynamics, vibronic coupling 384—386
Diabatic representation, electronic states, adiabatic-to-diabatic transformation 292—293
Diabatic representation, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework 54—56
Diabatic representation, non-adiabatic coupling, future research applications 118—119
Diabatic representation, non-adiabatic coupling, minimal diabatic potential matrix 82—89
Diabatic representation, non-adiabatic coupling, theoretical background 41—44
Diabatic representation, properties and equations 132—134
Diabatic representation, Renner — Teller effect, triatomic molecules 595—598
Diabatization matrix, electronic states, adiabatic-to-diabatic transformation 295—300
Diagonal element, adiabatic-to-diabatic transformation matrix, quantization 67
Diagonal element, molecular systems, multidegenerate nonlinear coupling 247
Diatomics-in-molecule (DIM) surfaces, electron nuclear dynamics (END), molecular systems 345—349
Diatomics-in-molecule (DIM) surfaces, permutational symmetry, nuclear spin function 679—680
Diau, E.W.-G. 434(4) 458(64) 487(64) 500—501
Dick, Bernhard 476(87) 502
Diels — Alder reaction, phase-change rule, pericyclic reactions 447—450
Dimensionless parameters, Renner — Teller effect, tetraatomic molecules, perturbative handling 642—646
Dirac function, non-adiabatic coupling, curl condition, pseudomagnetic field 95—96
Dirac bra-ket notation, permutational symmetry, group theoretical properties 672—674
Dirac theory, molecular systems, modulus-phase formalism, electron properties 266—268
Dirac theory, molecular systems, modulus-phase formalism, topological phase electrons 270—272
Dirac, P.A.M. 43(77) 140 199(4) 200(7) 207(134) 213(134) 263(134) 273 277
Direct integration, molecular systems, multidegenerate nonlinear coupling 242—243
Direct molecular dynamics, adiabatic systems 362—381
Direct molecular dynamics, adiabatic systems, Gaussian wavepacket propagation 377—381
Direct molecular dynamics, adiabatic systems, initial condition selection 373—377
Direct molecular dynamics, adiabatic systems, nuclear Schroedinger equation 363—373
Direct molecular dynamics, electron nuclear dynamics (END), structure and properties 327
Direct molecular dynamics, future research issues 415—417
Direct molecular dynamics, non-adiabatic coupling, ab initio multiple spawning 411—414
Direct molecular dynamics, non-adiabatic coupling, CASSCF techniques 404—411
Direct molecular dynamics, non-adiabatic coupling, CASSCF techniques, direct dynamics 410—411
Direct molecular dynamics, non-adiabatic coupling, CASSCF techniques, MMVB method 406—410
Direct molecular dynamics, non-adiabatic coupling, Ehrenfest dynamics 395—397
Direct molecular dynamics, non-adiabatic coupling, Gaussian wavepackets and multiple spawning 399—402
Direct molecular dynamics, non-adiabatic coupling, mixed techniques 403—404
Direct molecular dynamics, non-adiabatic coupling, semiempirical studies 414—415
Direct molecular dynamics, non-adiabatic coupling, theoretical background 356—362
Direct molecular dynamics, non-adiabatic coupling, trajectory surface hopping 397—399
Direct molecular dynamics, non-adiabatic coupling, vibronic effects 381—393
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, adiabatic properties 382—384
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, conical intersections 386—389
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, diabatic properties 384—386
Direct molecular dynamics, non-adiabatic coupling, vibronic effects, Hamiltonian model 389—393
Direct molecular dynamics, nuclear motion Schroedinger equation, principles of 418—420
Dirichlet conditions, electronic states, adiabatic-to-diabatic transformation, two-state system 304—309
Discrete Fourier transform (DFT), non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation 153—155
Discrete variable representation (DVR), direct molecular dynamics, nuclear motion Schroedinger equation 364—373
Discrete variable representation (DVR), non-adiabatic coupling, quantum dressed classical mechanics 177—183
Discrete variable representation (DVR), non-adiabatic coupling, quantum dressed classical mechanics, formulation 181—183
Discrete variable representation (DVR), permutational symmetry, dynamic Jahn — Teller and geometric phase effects 699—711
DiVicenzo, D. 249(317) 282
Dixon, R.N. 211(186) 248(186) 278 357(16) 364(16) 424 608(35) 617(35) 618(74) 619(77—78) 654—655
Dixon’s model, Renner — Teller effect, triatomic molecules 617—618
Diz, A. 325(2 4) 333(4) 339(4) 344—345(42—43) 351—353
DMBE III calculation, permutational symmetry, dynamic Jahn — Teller and geometric phase effects 699—711
Dobbyn, A.J. 285(40) 321 660(17) 739
Dodonov, V.V. 230—232(262) 280
Domcke, W. 41(37 42) 82(42) 139 144(26) 195 242(296) 281 285(38) 321 356(1) 360(65) 381(161 170 173—174) 382(1 65) 384(1 65) 385(187) 389(65) 391(65) 393(170 173—174) 395(1) 423 425 428—429 434(7) 479—480(92) 488(111) 491(7 111 118) 500 502—503 506(1 4) 555 586(13—14) 591(13) 598(13—14) 624(13—14 114) 653 656
Donoso, A. 357(21) 424
Doscher, M. 393(194) 429
Double degeneracy, geometric phase theory, Jahn — Teller models 2—4 31—33
Doubleday, C. 460(67) 502
Dressier, K. 585(9—10) 615(9—10) 653
Dreyer, J. 479—480(92) 502
Du, M. 211(184) 278
Dubbens, D. 248(306) 281
Dubois, I. 619(76) 655
Duch, W. 145(39—40) 195
Dultz, W. 206(115—116) 276
Dunn, J.I. 233(276) 280
Dunn, T.J. 204(88) 211(88) 275
Dupuis, M. 363(96) 426 515(15—16) 553(15—16) 555
Dutton, Z. 249(315) 282
Duxbury, G. 586(11) 618(74) 619(77—85) 653 655
Dyall, K.G. 580(38) 581
Dynamic phase, properties 210
D’mello, M. 145(47) 150(47) 164(47) 167(80 86) 195—196
Eaton, D.R. 481(94) 502
Ebata, T. 341(40) 353
Eberly, J.H. 212(198) 278
Eckart conditions, Renner — Teller effect, triatomic molecules 610—615
Eckart, C. 610(38) 654
Eckel, H.-E. 248(310) 281
Eckel, H.A. 3(17) 20(17) 37
Ehrenburg, W. 209(152) 277
Ehrenfest dynamics, direct molecular dynamics, error sources 403—404
Ehrenfest dynamics, direct molecular dynamics, Gaussian wavepacket propagation 378—383
Ehrenfest dynamics, direct molecular dynamics, molecular mechanics valence bond (MMVB) 409—411
Ehrenfest dynamics, direct molecular dynamics, non-adiabatic coupling 395—397
Ehrenfest dynamics, direct molecular dynamics, theoretical background 358—361
Ehrenfest dynamics, direct molecular dynamics, wave function propagation 422—423
Ehrenfest, P. 422(252) 431
Eigenstates, electronic states, triatomic quantum reaction dynamics, partial wave expansion 315— 317
Eigenstates, geometric phase theory, adiabatic eigenstates, conical intersections 8—11
Eigenstates, geometric phase theory, linear Jahn — Teller effect 18—20
Eigenstates, geometric phase theory, spin-orbit coupling 21—22
Elbert, S.T. 41(6) 138 363(96) 426 438(33) 487(33) 500 558(5) 580
Electromagnetic theory, geometric phase theory, single-surface nuclear dynamics, vector- potential, molecular Aharonovo — Bohm effect 26—31
Electron nuclear dynamics (END), degenerate states chemistry xii—xiii
Electron nuclear dynamics (END), direct molecular dynamics, structure and properties 327
Electron nuclear dynamics (END), molecular systems 337—351
Electron nuclear dynamics (END), molecular systems, final-state analysis 342—349
Electron nuclear dynamics (END), molecular systems, intramolecular electron transfer 349—351
Electron nuclear dynamics (END), molecular systems, reactive collisions 338—342
Electron nuclear dynamics (END), structural properties 325—327
Electron nuclear dynamics (END), theoretical background 323—325
Electron nuclear dynamics (END), time-dependent variational principle (TDVP) 327—337
Electron nuclear dynamics (END), time-dependent variational principle (TDVP), basic ansatz 330—333
Electron nuclear dynamics (END), time-dependent variational principle (TDVP), free electrons 333—334
Electron nuclear dynamics (END), time-dependent variational principle (TDVP), general electron structure 334—337
Electron properties, molecular systems, modulus-phase formalism, Dirac theory 266—268
Electron properties, molecular systems, modulus-phase formalism, nonrelativistic states 263—265
Electron spin, permutational symmetry 711—712
Electron transfer, direct molecular dynamics 415
Electron transfer, electron nuclear dynamics (END), intramolecular transfer 349—351
Electron transfer, electron nuclear dynamics (END), molecular systems 348—349
Electronic Hamiltonian, conical intersections, spin-orbit interaction 559
Electronic states, adiabatic representation, Born — Huang expansion 286—289
Electronic states, adiabatic representation, first-derivative coupling matrix 290—291
Electronic states, adiabatic representation, nuclear motion Schroedinger equation 289—290
Electronic states, adiabatic representation, second-derivative coupling matrix 291—292
Electronic states, adiabatic-to-diabatic transformation, diabatic nuclear motion Schroedinger equation 293—295
Electronic states, adiabatic-to-diabatic transformation, diabatization matrix 295—300
Electronic states, adiabatic-to-diabatic transformation, electronically diabatic representation 292—293
Electronic states, adiabatic-to-diabatic transformation, two-state application 300—309
Electronic states, four-state molecular system, non-adiabatic coupling, quantization 60—62
Electronic states, four-state molecular system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices 92
Electronic states, molecular systems, theoretical background 198—205
Electronic states, quantum reaction dynamics, theoretical background 283—286
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism 309—319
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism, partial wave expansion 312—317
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism, propagation scheme and asymptotic analysis 317—318
Electronic states, quantum reaction dynamics, triatomic reactions, two-state formalism, symmetrized hyperspherical coordinates 310—312
Electronic states, quantum theory and 198—205
Electronic states, three-state molecular system, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting conical intersections 81— 89
Electronic states, three-state molecular system, non-adiabatic coupling, numerical study 134—137
Electronic states, three-state molecular system, non-adiabatic coupling, numerical study, extended Born — Oppenheimer equations 174—175
Electronic states, three-state molecular system, non-adiabatic coupling, quantization 59—60
Electronic states, three-state molecular system, non-adiabatic coupling, quantization, extended Born — Oppenheimer equations 173—174
Electronic states, three-state molecular system, non-adiabatic coupling, sign flip derivation 73—77
Ðåêëàìà