Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Berger, J.      211(188) 248(188) 278
Bernardi, M.A.      234(279) 281 357(6—7) 358(42) 359(49 51—52 63—64) 360(79—84 86) 381(6—7) 405(230) 406(63—64) 407(79 237) 408(80—82) 409(83—84) 410(86 230) 424—426 430 434(9) 446(37—38) 447(44) 450(44) 479(89 92) 480(92) 489(37 114) 490(9 37—38 116) 491(117) 494—496(44) 500—503
Bernoulli’s equation, molecular systems, modulus-phase formalism      265—266
Bernstein, H.J.      207(129) 276
Berry, M.V.      2—3(8) 12(8) 14—15(8) 31—32(8) 37 42(60) 140 200(9) 204(82) 206(9 118) 207(9) 208(9 144) 209—210(9) 217(9) 230—231(261) 232(9 261) 234(9) 254(9) 270—271(9) 273 275—277 284—285(25) 320 339(33) 352 487(101) 503 660(21) 739
Berry’s phase      see "Geometric phase effect"
Berson, J.A.      494(132) 503
Bersuker, I.B.      3(15) 22(31) 33(45) 37—38 201(46—47) 202(54) 209(47) 233(47 54 275) 239(54) 240(275) 247(47) 274 280 381(165 168) 428—429 461(70—71) 462(70) 502 666(41) 739
Bertani, P.      207(129) 276
Bessel — Ricatti equation, electronic states, triatomic quantum reaction dynamics      318
Beswick, A.J.      82(94) 118(94) 141 147(62) 196
Bethe, H.A.      571(24) 580
Bettendorff, M.      290(63) 321
Bettens, R.      361(91) 426
Bevilacqua, G.      247(305) 281
Bezant, A.J.      465(76) 502
Bicyclo-[3, 1, 0]hex-2—ene (BCE), phase-change rule, large four-electron systems      459
Billing, G.D.      41(25) 82(104) 97(115) 102(104) 103(115) 104(116) 111(104) 112(116) 114(112) 117(125) 118(104) 119(115) 122(25 133—134) 139 142 145(48) 146(53—56 60) 147(65—66) 148(65) 150(48 60) 152(48 60 71) 157(53—54) 162(54—55) 163(55) 164(48 54) 166(81) 168(88) 177(81 89—90) 178(81) 179(81 91) 182(48) 184(60) 195—196 202(57) 207(128) 211(189—191 193—195) 234(193) 248(189—191 193—195) 274 276 278 326(17) 352 379(150) 380(151—152) 395(197) 399(217) 428—430 487—488 (102) 503 506(3) 555 668(51) 740
Binkley, J.S.      349(54) 353
Biradical models, conical intersection research      494—496
Bisseling, R.H.      364(105) 427
Bitter, T.      248(306) 281
Bjerre, A.      82(98) 141 345(47) 353 397(200) 429
Blais, N.      397(202) 429 715(82) 738(82) 740
Blaise, N.C.      104(118) 142 162(77) 196
Blanchet, V.      204(94) 207(94) 275
Blass, A.      344(45) 353
Blaudeau, J.-L.      634(167) 658
Blomberg, M.      363(97) 427
Blum, K.      375(141) 428
Boatz, J.      363(96) 426
Body-fixed coordinates, permutational symmetry, electronic wave function      680—682
Body-fixed coordinates, permutational symmetry, group theoretical properties      669—674
Body-fixed coordinates, permutational symmetry, total molecular wave function      664—668 674—678
Boggs, J.E.      33(45) 38 233(274) 240(274) 280
Bogoliubov, N.N.      263(322) 267(322) 282
Bohm, A.      212(221—222) 279
Bohm, D.      3(12) 27(12) 37 57—58(82) 95(113) 141 200(8) 209(8) 213(223) 262(318) 264(318) 273 279 282 285(27) 320 420(251) 431 487(104) 503
Bohr — Sommerfeld quantization, non-adiabatic coupling      57—58
Bohr — Sommerfeld quantization, non-adiabatic coupling, quasiclassical trajectory (QCT) calculation, three-particle reactive system, $D + H_2$ reaction      160—163
Bolman, P.S.H.      624(107) 656
Bolton, K.      356(2) 372(2) 423
Boltzmann distribution, electron nuclear dynamics (END), intramolecular electron transfer      350—351
Bonacic-Koutecky, F.      357(5) 381(5) 415(249) 424 431 473(82) 495(82 136) 502 504
Borden, W.T.      464(72) 467—468(72) 502
Borghs, G.      248(309) 281
Borkowski, J.      167(80) 196
Born — Huang approximation, conical intersections, theoretical background      506—507
Born — Huang approximation, electronic states, adiabatic representation      286—289
Born — Huang approximation, electronic states, adiabatic-to-diabatic transformation      296—300
Born — Huang approximation, electronic states, diabatic representation      292—293
Born — Huang approximation, electronic states, triatomic quantum reaction dynamics      309—319
Born — Huang approximation, electronic states, triatomic quantum reaction dynamics, partial wave expansion      312—317
Born — Huang approximation, nuclear motion Schroedinger equation      418—420
Born — Huang approximation, permutational symmetry, total molecular wave function      667—668
Born — Huang approximation, potential energy surfaces (PES)      284—286
Born — Oppenheimer approximation      see also "Crude Born — Oppenheimer approximation" "Extended
Born — Oppenheimer approximation, conical intersection, historical background      144—148
Born — Oppenheimer approximation, conical intersection, two-state chemical reactions      436—438
Born — Oppenheimer approximation, degenerate states chemistry      ix-xiii
Born — Oppenheimer approximation, direct molecular dynamics, adiabatic molecular dynamics      362—381
Born — Oppenheimer approximation, direct molecular dynamics, theoretical background      357—361
Born — Oppenheimer approximation, direct molecular dynamics, vibronic coupling, adiabatic effects      382—384
Born — Oppenheimer approximation, electron nuclear dynamics (END), theoretical background      324—325
Born — Oppenheimer approximation, geometric phase theory, single-surface nuclear dynamics      24
Born — Oppenheimer approximation, molecular systems, chemical research      ix—xiii
Born — Oppenheimer approximation, molecular systems, Yang — Mills fields, nuclear Lagrangean      249—250
Born — Oppenheimer approximation, non-adiabatic coupling, Born — Oppenheimer — Huang equation, Hilbert space      44—45
Born — Oppenheimer approximation, non-adiabatic coupling, Born — Oppenheimer — Huang equation, sub-Hilbert space      46—47
Born — Oppenheimer approximation, non-adiabatic coupling, equations      186—191
Born — Oppenheimer approximation, non-adiabatic coupling, extended Born — Oppenheimer equations, closed path matrix quantization      171—173
Born — Oppenheimer approximation, non-adiabatic coupling, extended Born — Oppenheimer equations, theoretical principles      144—148
Born — Oppenheimer approximation, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state matrix quantization      173—174
Born — Oppenheimer approximation, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state system analysis      174—175
Born — Oppenheimer approximation, non-adiabatic coupling, Jahn — Teller systems, Longuet — Higgins phase      121—122
Born — Oppenheimer approximation, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system      150—157
Born — Oppenheimer approximation, non-adiabatic coupling, molecular systems, electronic states      202—205
Born — Oppenheimer approximation, non-adiabatic coupling, potential energy surfaces (PES)      284—286
Born — Oppenheimer approximation, non-adiabatic coupling, theoretical background      42—44
Born — Oppenheimer approximation, nuclear motion Schroedinger equation      418—420
Born — Oppenheimer approximation, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      703—711
Born — Oppenheimer approximation, permutational symmetry, generalized approximation (GBO), two-dimensional Hilbert space      718—721
Born — Oppenheimer approximation, permutational symmetry, non-adiabatic coupling      711
Born — Oppenheimer approximation, permutational symmetry, total molecular wave function      667—668 676—678
Born — Oppenheimer approximation, phase-change rule, chemical reactions      450—453
Born — Oppenheimer approximation, Renner — Teller effect, nonlinear molecules      606—610
Born — Oppenheimer approximation, Renner — Teller effect, tetraatomic molecules      628—631
Born — Oppenheimer approximation, Renner — Teller effect, theoretical principles      584—585
Born — Oppenheimer approximation, Renner — Teller effect, triatomic molecules      587—598
Born — Oppenheimer approximation, Renner — Teller effect, triatomic molecules, Hamiltonian selection      611—615
Born — Oppenheimer approximation, Renner — Teller effect, triatomic molecules, pragmatic models      619—621
Born — Oppenheimer — Huang equation, non-adiabatic coupling, future research applications      118—119
Born — Oppenheimer — Huang equation, non-adiabatic coupling, Hilbert space, Born — Oppenheimer equations      44—45
Born — Oppenheimer — Schroedinger equation, degenerate states chemistry      x—xiii
Born, M.      40(1—2) 82(1—2) 138 144(16—17) 194 202(62—63) 223(250) 274—275 280 283(1) 284(2—3) 289(2—3) 319—320 506—507(5—7) 511(7) 555 584(6) 653 662(38—39) 664(39) 667(38—39) 739
Born-Oppenheimer, historical background      40—44
Born-Oppenheimer, minimal diabatic potential matrix      81—89
Born-Oppenheimer, sub-Hilbert space      46—47
Born-Oppenheimer, vector potential, Yang — Mills field      93—95
Bornemann, C.      492(124) 503
Bose — Einstein statistics, permutational symmetry, total molecular wave function      677—678
Bose, S.      248(312) 281
Botschwina, P.      481(93) 502 626(151) 657
Bouchene, M.-A.      204(94) 207(94) 275
Bound-state photoabsorption, direct molecular dynamics, nuclear motion Schroedinger equation      365—373
Boundary conditions, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      328—330
Boundary conditions, electronic states, adiabatic-to-diabatic transformation, two-state system      304— 309
Boundary conditions, geometric phase theory, single-surface nuclear dynamics, vibronic multiplet ordering      27—31
Boundary conditions, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, orthogonality      123
Boundary conditions, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting conical intersections      88—89
Boundary conditions, non-adiabatic coupling, theoretic-numerical approach, three-state system in plane      101—103
Boundary conditions, non-adiabatic coupling, theoretic-numerical approach, two-state system in plane, conical intersection distribution solution      101
Boundary conditions, non-adiabatic coupling, theoretic-numerical approach, two-state system in plane, single conical intersection solution      97—101
Boundary conditions, non-adiabatic coupling, three-state molecular system, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      117
Bramley, M.J.      626(157) 657
Branching space dimension, conical intersections, spin-orbit interaction      559—561
Breakable multidegeneracy, non-adiabatic coupling      81
Breit — Pauli approximation, conical intersections, spin-orbit interaction      571—578
Breit — Pauli approximation, conical intersections, spin-orbit interaction, $H_2+OH 1, 2^2A'$ and $1^2A'$ states      571—572
Breit — Pauli approximation, conical intersections, spin-orbit interaction, convergence equations      572
Breit — Pauli approximation, conical intersections, spin-orbit interaction, orthogonality properties      576—578
Breit — Pauli approximation, conical intersections, spin-orbit interaction, seam parameters, conical parameters and invariant      574—576
Breit — Pauli approximation, conical intersections, spin-orbit interaction, seam parameters, locus      572—574
Breit — Pauli approximation, Renner — Teller effect, triatomic molecules      597—598
Bretenaker, F.      213(230) 279
Brink, D.M.      33(48) 38
Brody distribution, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      708—711
Brogli, F.      381(169) 429
Bromage, J.      212(197) 278
Brommer, M.      621(88) 622(88 92 94—95) 623(94) 655—656
Broo, A.      349(58) 353
Brooks, C.      359(59) 425
Brown, F.B.      104(118) 142 715(82) 738(82) 740
Brown, J.M.      584(3) 586(3 12) 591(12) 594(19) 604(30—31) 613(58) 617—618(12) 624(3 19 107—111) 641(12) 653—656
Bruckmann, P.      473(82) 495(82) 502
Brukner, G      206(119) 276
Brumer, P.      204(84—86 93) 211(84—86) 275
Brumm, M.      623(102—103) 656
Bruna, P.J.      290(63) 321 624(113) 656
Brune, M.      200(20) 273
Buchelt, R.J.      207—208(124) 276
Buchenau, H.      365(111) 427
Buchsbaum, P.H.      200(19) 204(19 95) 211(95) 273
Buekener, R.J.      144(28) 195
Buenker, R.      41(42—43) 82(52—53 105) 109(105) 140—141 202(51) 234(278) 274 281 290(63) 321 583(1—2) 586(2 15—16) 594(20—21) 604(2) 606(33) 610(16) 612(56) 620(16 21 86) 621(21 86) 622(16) 623(2 15 33) 624(20 112—113 115 117—121) 625(140) 653—657
Buks, E.      200(17) 273
Bunker, P.R.      612(55) 614(60—65) 615(62—64) 618(55) 619(60) 620(63) 623(102—105) 626(160) 655—657
Bunker, R.      376(142) 428
Bunker, T.J.      455(56) 501
Burant, J.C.      363(95) 426
Burdett, J.K.      481(96) 502
Burge, R.E.      208(150) 277
Burghardt, I.      211(180) 278 358(34) 380(34) 424
Burlisch — Stoer integrator, direct molecular dynamics, ab initio multiple spawning (AIMS)      412—414
Buss, V.      411(242) 430
Butadiene molecules, conical intersection location      490
Butadiene molecules, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique      408—410
Butadiene molecules, loop construction      474—482
Butadiene molecules, phase-change rules, four-electron ring closure      455—456
Butadiene molecules, phase-change rules, two-state chemical reactions      436—438
Butene compounds, loop construction      478—479
Butler, L.J.      234(280) 281 381(163) 428
Buttiker — Landauer method, time shift calculations      213
Cabrera-Trujillo, R.      338(27—29) 339(27) 352
Califano, S.      730—732(95) 741
Cammi, R.      363(95) 426
Cao, T.Y.      199(3) 273
Car — Parinello method, direct molecular dynamics, theoretical background      360—361
Car — Parinello method, electron nuclear dynamics (END), structure and properties      327
Car, R.      215(238) 218(238) 279 327(18) 352 360(70—72) 425
Carassity, V.      481—482(95) 502
Caratheodory, C.      217(246) 280
Caridade, P.J.S.B.      719(88) 741
Carnevali, P.      215(238) 218(238) 279 360(70) 425
Carney, G.D.      612(52) 655
Carpenter, B.      376(144) 399(214) 409(239) 414(144 214) 428 430
Carrick, P.G.      624(116) 656
Carrington, T.      144(9) 194 611(46) 624(106—107) 654 656
Carter, S.      612(48—51) 621(88) 622(48—51 88 91 94 98) 623(94) 624(130) 626(155) 654—657 676(57) 740
Cartesian coordinates, crude Born — Oppenheimer approximation, nuclei interaction integrals      524—527
Cartesian coordinates, direct molecular dynamics, vibronic coupling      383—384
Cartesian coordinates, electronic state adiabatic representation, first-derivative coupling matrix      290—291
Cartesian coordinates, electronic states, adiabatic-to-diabatic transformation, two-state system      303—309
Cartesian coordinates, electronic states, triatomic quantum reaction dynamics      310—312
Cartesian coordinates, non-adiabatic coupling, quantum dressed classical mechanics      179
Cartesian coordinates, non-adiabatic coupling, two-state molecular system, $C_2H$-molecule: (1, 2) and (2, 3) conical intersections      109—112
Cartesian coordinates, non-adiabatic coupling, two-state molecular system, single conical intersection solution      98—101
Cartesian coordinates, permutational symmetry, degenerate/near-degenerate vibrational levels      728—733
Cartesian coordinates, Renner — Teller effect, triatomic molecules, Hamiltonian equations      612—615
Castillo, J.F.      167(87) 196
Cattaneo, P.      403(225) 430
Cattarius, C.      393(190) 429
Cauchy-integral method, molecular systems, component amplitudes      219—220
Cederbaum, L.S.      41(37—38 41) 47(41) 82(106) 109(106) 139 141 144(25—26 30) 195 202—203(49) 242(49 296—297) 274 281 285(42 44—45) 301(44—45) 321 326(14) 352 357(19) 358(34) 360(65) 364(19 108) 365(109) 380(34) 381(109 161 170) 382(65) 383(179) 384(65) 385(179) 389(65) 390(109) 391(65) 393(109 170 190 192—193 195) 419(179) 424—425 427—429 487(100) 488(111) 491(100 111 121) 503 586(13) 591(13) 598(13) 624(13 114) 653 656 660(10) 738
Celani, P.      359(49—50) 405(230) 410(230) 425 430 446(38) 490(38) 501
Cenek, W.      506(11) 555
Center-of-mass coordinates, crude Born — Oppenheimer approximation, hydrogen molecule      513—516
Center-of-mass coordinates, permutational symmetry, total molecular wave function      664—668
Cerjan, C.      364(103 105) 427
Cervero, J.M.      210(178) 278
Chaban, G.      42—43(65) 97(65) 104(65) 118(65) 140 236(285) 281
Chajia, M.      118(127) 142
Challacombe, M.      363(95) 426
Chambaud, G.      612(51) 622(51 92—93 97 99—101) 655—656
Chancey, C.C.      33(47) 38 209(164) 277
Chandler, D.      377(145) 428
Chandrasekhar, J.      349(53) 353
Chapman, S.      82(99) 141 376(142) 397(206) 428 430
Chapuisat, X.      41(50) 140 242(294—295) 281
Charutz, D.M.      28(39) 37 41(23) 86(23) 122(23) 139 146(58) 150(58) 157(58) 195 242(300—301) 248(300—301) 281
Chauvat, D.      213(230) 279
Cheeseman, J.R.      363(95) 426
Chemical identity, permutational symmetry, total wave function      674—678
Chen, G.-Z.      210(175) 278
Chen, W.      360(78) 363(95) 372(78) 426
Chen, Y.-J.      624(127) 657
Cheng, C.M.      200(12) 208(12) 273
Chiang, W.-Y.      624(127) 657
Child, M.S.      35(50) 38 145(37) 149(37) 195 202(58) 210(169 173—174) 212(208) 248(169) 274 277—279 284(11) 320
Chingas, G.C.      3(13) 37 232(265) 280
Chiral systems, phase-change rule      456—458
Chowdhury, P.K.      458(63) 487(63) 501
Christiansen, P.L.      208(139) 277
Chu, Z.      411(241) 430
Cimirglia, R.      385(185) 429
Cioslowski, J.      363(95) 426
cis-trans isomerization, loop construction, ethylene photolysis      472—473
Clark, T.      349(53) 353
Clary, D.C.      211(187) 248(187) 278
Classical wave theory, historical background      206—207
Clifford, S.      360(80) 363(95) 408(80) 426
Coalson, R.D.      326(13) 352 379(149) 428
Cocchini, F.      134—135(135) 137(135) 142
Coherent states, direct molecular dynamics, non-adiabatic coupling      403—404
Coherent states, molecular systems      212
Coker, D.F.      397(204—205) 398(204) 399(205) 403(205) 429
Colin, R.      625(133) 657
Collin, G.J.      456(58) 473(58) 501
Collins, M.      361(89—94) 426
Colwell, S.M.      626(158) 657
Complete active space (CAS) wave functions, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      334—337
Complete active space self-consistent field (CASSCF) technique, conical intersection location      492—493
Complete active space self-consistent field (CASSCF) technique, direct molecular dynamics, non-adiabatic systems      404—411
Complete active space self-consistent field (CASSCF) technique, direct molecular dynamics, theoretical background      358—361
Complete active space self-consistent field (CASSCF) technique, direct molecular dynamics, vibronic coupling, diabatic representation      385—386
Complex representations, multidegenerate nonlinear coupling, higher order coupling      243—244
Component amplitudes, molecular systems, analytic theory      214—233
Component amplitudes, molecular systems, analytic theory, Cauchy-integral method      219—220
Component amplitudes, molecular systems, analytic theory, cyclic wave functions      224—228
Component amplitudes, molecular systems, analytic theory, modulus and phase      214—215
Component amplitudes, molecular systems, analytic theory, modulus-phase relations      217—218
Component amplitudes, molecular systems, analytic theory, near-adiabatic limit      220—224
Component amplitudes, molecular systems, analytic theory, reciprocal relations      215—217 232—233
Component amplitudes, molecular systems, analytic theory, wave packets      228—232
Component amplitudes, multidegenerate nonlinear coupling, continuous tracing, component phase      236—241
Conaway, W.E.      341(39—40) 353
Condon approximation, direct molecular dynamics, ab initio multiple spawning (AIMS)      414
Condon approximation, direct molecular dynamics, adiabatic systems      374—377
Condon approximation, direct molecular dynamics, vibronic coupling, diabatic representation      386
Configuration space, canonical intersection, historical background      144—148
Configuration space, non-adiabatic coupling, extended Born — Oppenheimer equations      170—171
Configuration state functions (CSFs), direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      405—411
Conical intersections, crude Born — Oppenheimer approximation, theoretical background      506—507
Conical intersections, degenerate states chemistry      xi—xiii
Conical intersections, direct molecular dynamics, vibronic coupling      386—389
Conical intersections, electronic states, adiabatic representation      291
Conical intersections, electronic states, adiabatic-to-diabatic transformation, two-state system      303—309
Conical intersections, future research issues      493—496
Conical intersections, geometric phase theory      4—8
Conical intersections, geometric phase theory, adiabatic eigenstates      8—11
Conical intersections, loop construction, Longuet — Higgins loops      461—472
Conical intersections, loop construction, Longuet — Higgins loops, cyclopentadienyl radical/cation systems      464—472
Conical intersections, loop construction, phase-change rule      443—446
Conical intersections, loop construction, photochemical systems      453—460
Conical intersections, loop construction, photochemical systems, four-electron systems      455—458
Conical intersections, loop construction, photochemical systems, larger four-electron systems      458—459
Conical intersections, loop construction, photochemical systems, multielectron systems      459—460
Conical intersections, loop construction, photochemical systems, three-electron systems      455
Conical intersections, loop construction, qualitative molecular photochemistry, four-electron problems      472—482
Conical intersections, loop construction, quantitative cyclohexadiene photochemistry      482—487
Conical intersections, molecular systems, anchors      439—441
Conical intersections, molecular systems, anchors, molecules and independent quantum species      439—441
Conical intersections, molecular systems, electronic states      202—205
Conical intersections, molecular systems, multidegenerate nonlinear coupling, pairing      235—236
Conical intersections, molecular systems, multidegenerate nonlinear coupling, research background      233—234
Conical intersections, molecular systems, theoretical background      434—435
Conical intersections, molecular systems, two-state systems      436—438
Conical intersections, non-adiabatic coupling, Born — Oppenheimer approximation, matrix elements      186—191
Conical intersections, non-adiabatic coupling, coordinate origins      137—138
Conical intersections, non-adiabatic coupling, extended Born — Oppenheimer equations, closed path matrix quantization      171 — 173
Conical intersections, non-adiabatic coupling, extended Born — Oppenheimer equations, theoretical principles      144—148
Conical intersections, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state matrix quantization      173—174
Conical intersections, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state system analysis      174—175
Conical intersections, non-adiabatic coupling, Herzberg — Longuet — Higgins phase-based treatment, Jahn — Teller model      185—186
Conical intersections, non-adiabatic coupling, Jahn — Teller systems, Longuet — Higgins phase      119—122
Conical intersections, non-adiabatic coupling, Longuet — Higgins phase-based treatment      148—168
Conical intersections, non-adiabatic coupling, Longuet — Higgins phase-based treatment, geometric phase effect, two-dimensional two-surface system      148—157
Conical intersections, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system      157—168
Conical intersections, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting intersections      85—89
Conical intersections, non-adiabatic coupling, multidegeneracy      80—81
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå