Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Àâòîðû: Michael Baer, Gert D.Billing
Àííîòàöèÿ: Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.
This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.
Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 05.08.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Lucas, N.J.D. 624(106) 656
Lukin, M.D. 249(316) 282
Macias, A. 41(47—48) 67(91) 82(47—48) 140—141 385(183) 429
Madden, P. 360(73) 425
Madelung, E. 265(326) 282
Mahalu, D. 200(17) 273
Mahapatra, S. 285(42) 321 386(188) 393(192—194) 429 491(121) 503 660(3) 738
Maier, G. 476(86) 478(86) 502
Mair, A. 249(316) 282
Malick, D.K. 363(95) 426
Malmqvist, P. 358(39) 363(97) 424 427
Malriu, J.-P. 385(185) 429
Manaa, M.R. 558(4) 572(32) 580—581
Mandel, L. 200—201(28) 206(28) 207(127 130) 208(28) 211(28) 264(28) 274 276
Mandelshtam, V.A. 660(16) 739
Manifold approximation, non-adiabatic coupling, line integral conditions, adiabatic-to-diabatic transformation matrix 53
Manini, N. 210(168) 277
Manko, V.I. 230—232(262) 280
Manocha, A.S. 381(169) 429
Manolopoulos, D.E. 210(169) 248(169) 277 285(41) 313(88) 318(88) 321—322 380(157—158) 428
Manthe, U. 326(14) 352 357(19) 364(19 108) 393(191) 424 427 429
Marcus theory, electron nuclear dynamics (END), intramolecular electron transfer 349—351
Marcus, R.A. 349(55—57) 353 374(134) 428
Margenau, H. 291(71) 321
Marian, G. 559(13) 571(13) 580 597(23) 625(141) 626(141 149 152) 631(149) 634—635(152) 638(152) 647(149) 654 657
Marian, R. 594(20) 624(20) 654
Mariano, P.S. 459(66) 502
Markovic, N. 117(125) 142 145(48) 150(48) 152(48) 164(48) 182(48) 195 668(51) 740
Marston, C.C. 357(16) 364(16) 424
Martens, C. 357(21) 424
Martin, A. 506(10) 555
Martin, D. 622(89) 655
Martin, R.L. 363(95) 426
Martin, Th. 213(229) 279
Martinelli, L. 247(305) 281
Martinez, T.J. 326(16) 352 358(35—36) 361(88) 399(35—36 218—219) 400(220) 401(36 218) 402(35—36 221—222) 403(222) 406(236) 411(36 218 243—244) 413(236 245—246) 414(88 221 247—248) 424 426 430—431 434(10) 472(10) 473(81) 491(10 123) 500 502—503
Martinez-Haya, B. 167(85 87) 196
Marx, D. 360(74) 426
Maslov index, molecular systems 212
Maslov, V.P. 212(209) 279
Mass polarization effect, electronic state adiabatic representation, Born — Huang expansion 287—289
Massey, H.S.W. 203(65) 254(65) 275 339—340(31) 352
Matrix elements, Renner — Teller effect, triatomic molecules 594—598
Matsen, F.A. 144(14) 194
Matsika, S. 559(8—10) 560(17) 561(8) 565(17) 567(20) 568(10) 569(20) 570(10) 571(8) 580
Matsunaga, N. 42(66—67) 43(66—67) 71(66) 97(66—67) 104(66—67) 118(66—67) 140 301(79—80) 322 363(96) 426
Matsuzaki, K. 506(13) 555
Maxwell equation, non-adiabatic coupling, pseudomagnetic field 97
Mayer, M. 660(10) 738
Maynard, A. 364(107) 427
McCammon, J. 359(60) 425
McCarroll, R. 203(64) 254(64) 275 284(18—19) 320
McCarthy, M.I. 481(93) 502
McConnel, H.M. 464(74) 502
McCormack, D. 380(159) 428
McDiarmid, R. 484(99) 503
McDonald, B. 619(83—85) 655
McDonald, J.D. 144(7) 194
McDouall, J. 358(38) 424
McLachlan, A.D. 41(31) 139 241(286—287) 281
McWeeny, R. 498—499(139) 504
Mead, C.A. 2—4(10) 7(21) 9(10) 11(10) 18(21) 24—25(10) 27(34—35) 28(10 38) 29—30(10) 31(10 21) 33(44) 37—38 104(118) 122(132) 142 144(27) 145(30—33 41) 195 203(74) 204(76) 209(160—161 163) 242—243(302) 246—247(302) 250(76 163) 275 277 281 284(23—24) 285(45 51) 290(23) 297(76) 301(45 51 76) 320—322 385(182) 429 487(105) 488(110) 503 558(2) 559(2 11) 580 660(19—20 22) 668(19 45—47) 685(59) 687(59) 694(59) 699(19) 702(59) 703(76) 713(59) 715(82) 720(92) 728(20) 738(82) 739—741
Mebel, A.M. 13(26) 28(26) 37 41(12) 42—43(12 72—74) 71(12 74) 73(12) 82(104) 94(73—74) 97(72) 99(12) 102(12 104) 104(12 72—74 116—117) 109(12 73) 111(12 72—73 104) 112(116) 114(116) 116(73) 117(12 74) 118(72—74 104 126) 139—142 200(37) 202(55—56) 234(281—282) 242(56 282) 274 281 359(57) 425 488(113) 503 506(2) 555
Mehra, J. 199(2) 215(2) 217(2) 263(2) 273
Mehta, M.L. 703(75) 740
Meiswinkel, R. 41(39) 134(39) 139 202(52) 233(52) 274
Mendez, L. 67(91) 141
Menucci, B. 363(95) 426
Merchan, M. 472(80) 484(99) 502—503
Merer, A.J. 584—586(8) 598(24—27) 604(26) 606(25) 607(25) 608(8 24) 618(73) 619(24) 620(25—27) 621(25—26) 624(116) 641(8) 653—656
Merkt, F. 145(52) 195
Merlet, F. 455(56) 501
Merzbacher, E. 671(54) 722(54) 740
Meshulach, D. 211(181) 278
Messiah, A. 223(252) 280 377—378(147) 420(147) 428
Methiu, H. 358(26 33) 379(26) 399(33) 424
Metsdagh, J.M. 434(5) 500
Meyer, H.-D. 326(12) 352 357(19—20) 358(34) 364(19—20 105 108) 365(109 116) 380(34) 393(190 192 195) 405(231) 423(20) 424 427 429—430
Meyer, W. 3(17) 20(17) 37 41(6) 41(49) 82(49) 138 140 248(310) 281 385(184) 429
Micha, D.A. 41(44) 139
Michl, J. 357(4—5 13) 381(4—5) 424 434(2) 439(34) 446(34) 473(2) 474(34) 480(2) 494(2 129 133—134) 495(2 129 135—136) 500—501 503—504
Mielke, S.L. 82(101—102) 118(101—102) 141 403(224) 430
Millam, J. 360(75) 363(95) 426
Miller, T. 381(166—167) 428
Miller, T.A. 464(73) 465(73 76) 502
Miller, W. 374(136) 397(207) 404(228) 428 430
Miller, W.H. 201(42) 212(225) 214(42) 274 279 326(12) 352
Mills, I.M. 611(43) 654
Mills, R.L. 42(58) 93(58) 140 203(66) 213(66) 250(66) 275
Milton, D.J. 624(109) 656
Miniatura, Ch. 210(172) 214(172) 278
Minimal diabatic potential matrix, non-adiabatic coupling 81—89
Minimal models, Renner — Teller effect, triatomic molecules 615—618
Minimal residuals (MINRES) filter diagonalization, permutational symmetry, dynamic Jahn — Teller and geometric phase effects 699—711
Minimal residuals (MINRES) filter diagonalization, permutational symmetry, theoretical background 660—661
Minimum energy method (MEM), direct molecular dynamics, Gaussian wavepacket propagation 379—381
Minimum energy path (MEP), direct molecular dynamics, theoretical background 358—361
Mittal, J.P. 458(63) 487(63) 501
Mixed-state trajectory, conical intersection research 495—496
Mixed-state trajectory, direct molecular dynamics, Ehrenfest dynamics 396—399
Mixed-state trajectory, direct molecular dynamics, error sources 403—404
Mixed-state trajectory, direct molecular dynamics, molecular mechanics valence bond (MMVB) 411
Mixing angle, non-adiabatic coupling, two-state molecular system, molecule 104—109
Mladenovic, M. 611(47) 612(56) 654—655
Moate, M.C.P. 233(276) 280
Modulus-phase formalism, molecular systems 205
Modulus-phase formalism, molecular systems, component amplitude analysis 214—215 217—218
Modulus-phase formalism, molecular systems, Lagrangean properties, Dirac electrons 266—268
Modulus-phase formalism, molecular systems, Lagrangean properties, Dirac electrons, topological phase 270—272
Modulus-phase formalism, molecular systems, Lagrangean properties, Lagrangean-density correction term 269—270
Modulus-phase formalism, molecular systems, Lagrangean properties, nearly nonrelativistic limit 268—269
Modulus-phase formalism, molecular systems, Lagrangean properties, nonrelativistic electron 263—265
Modulus-phase formalism, molecular systems, Lagrangean properties, nonrelativistic/relativistic cases 262—263
Modulus-phase formalism, molecular systems, Lagrangean properties, potential fluid dynamics and quantum mechanics 265—266
Modulus-phase formalism, molecular systems, Lagrangean properties, spinor phases 272
Moebius strip, phase-change rule, ammonia and chiral systems 457—458
Moebius strip, phase-change rule, general bond reactions 452—453
Moebius strip, phase-change rule, pericyclic reactions 448—450
Moebius strip, phase-change rule, pi bond reactions 452—453
Moebius strip, phase-change rule, sigma bond reactions 452
Moffitt, W. 2(1 3) 33(3) 36—37 145(35) 195 696(73) 733(73) 740
Molecular dynamics, adiabatic molecular dynamics 362—381
Molecular dynamics, adiabatic molecular dynamics, Gaussian wavepacket propagation 377—381
Molecular dynamics, adiabatic molecular dynamics, initial condition selection 373—377
Molecular dynamics, adiabatic molecular dynamics, nuclear Schroedinger equation 363—373
Molecular dynamics, conical intersection location 491—492
Molecular dynamics, degenerate states chemistry xii—xiii
Molecular dynamics, direct molecular dynamics, theoretical background 356—362
Molecular dynamics, geometric phase theory, single-surface nuclear dynamics, vector-potential, molecular Aharonovo — Bohm effect 25—31
Molecular mechanics (MM) potentials, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 406—411
Molecular mechanics (MM) potentials, direct molecular dynamics, theoretical background 359—361
Molecular mechanics valence bond (MMVB), conical intersection location 489—490
Molecular mechanics valence bond (MMVB), direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 406—411
Molecular mechanics valence bond (MMVB), direct molecular dynamics, theoretical background 359—361
Molecular orbital (MO) theory, conical intersection research 493—496
Molecular orbital (MO) theory, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation 548—550
Molecular orbital (MO) theory, direct molecular dynamics, ab initio multiple spawning (AIMS) 413—414
Molecular orbital (MO) theory, direct molecular dynamics, AM1 Hamiltonian 415
Molecular orbital (MO) theory, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 405—411
Molecular orbital (MO) theory, direct molecular dynamics, nuclear motion Schroedinger equation 372—373
Molecular orbital (MO) theory, phase-change rule, chemical reactions 450—453
Molecular orbital (MO) theory, phase-change rule, cyclopentadienyl cation (CPDC) 467—472
Molecular orbital-conical intersection (MO-CI), Longuet — Higgins phase-change rule, cyclopentadienyl radical (CPDR) 464—467
Molecular orbital-conical intersection (MO-CI), two-state systems 438
Molecular systems, analytic theory, component amplitudes 214—233
Molecular systems, analytic theory, component amplitudes, Cauchy-integral method 219—220
Molecular systems, analytic theory, component amplitudes, cyclic wave functions 224—228
Molecular systems, analytic theory, component amplitudes, modulus and phase 214—215
Molecular systems, analytic theory, component amplitudes, modulus-phase relations 217—218
Molecular systems, analytic theory, component amplitudes, near-adiabatic limit 220—224
Molecular systems, analytic theory, component amplitudes, reciprocal relations 215—217 232—233
Molecular systems, analytic theory, component amplitudes, wave packets 228—232
Molecular systems, electron nuclear dynamics (END) 337—351
Molecular systems, electron nuclear dynamics (END), final-state analysis 342—349
Molecular systems, electron nuclear dynamics (END), intramolecular electron transfer 349—351
Molecular systems, electron nuclear dynamics (END), reactive collisions 338—342
Molecular systems, four-state molecular system, non-adiabatic coupling, quantization 60—62
Molecular systems, four-state molecular system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices 92
Molecular systems, modulus-phase formalism, Lagrangean properties, Dirac electrons 266—268
Molecular systems, modulus-phase formalism, Lagrangean properties, Dirac electrons, topological phase 270—272
Molecular systems, modulus-phase formalism, Lagrangean properties, Lagrangean-density correction term 269—270
Molecular systems, modulus-phase formalism, Lagrangean properties, nearly nonrelativistic limit 268—269
Molecular systems, modulus-phase formalism, Lagrangean properties, nonrelativistic electron 263—265
Molecular systems, modulus-phase formalism, Lagrangean properties, nonrelativistic/relativistic cases 262—263
Molecular systems, modulus-phase formalism, Lagrangean properties, potential fluid dynamics and quantum mechanics 265—266
Molecular systems, modulus-phase formalism, Lagrangean properties, spinor phases 272
Molecular systems, multiple degeneracy non-linearities 233—249
Molecular systems, multiple degeneracy non-linearities, adiabatic-to-diabatic transformation 241—242
Molecular systems, multiple degeneracy non-linearities, component phase continuous tracing 236—241
Molecular systems, multiple degeneracy non-linearities, conical intersection pairing 235—236
Molecular systems, multiple degeneracy non-linearities, direct integration 242—243
Molecular systems, multiple degeneracy non-linearities, experimental phase probing 248—249
Molecular systems, multiple degeneracy non-linearities, Jahn — Teller/Renner — Teller coupling effects 243—248
Molecular systems, multiple degeneracy non-linearities, Jahn — Teller/Renner — Teller coupling effects, complex representation 243—244
Molecular systems, multiple degeneracy non-linearities, Jahn — Teller/Renner — Teller coupling effects, generalized Renner — Teller coupling 247
Molecular systems, multiple degeneracy non-linearities, Jahn — Teller/Renner — Teller coupling effects, off-diagonal coupling 246—247
Molecular systems, multiple degeneracy non-linearities, Jahn — Teller/Renner — Teller coupling effects, off-diagonal element squaring 245—246
Molecular systems, phase factors 205—214
Molecular systems, quantum theory and 198—205
Molecular systems, three-state molecular system, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting conical intersections 81—89
Molecular systems, three-state molecular system, non-adiabatic coupling, numerical study 134—137
Molecular systems, three-state molecular system, non-adiabatic coupling, numerical study, extended Born — Oppenheimer equations 174—175
Molecular systems, three-state molecular system, non-adiabatic coupling, quantization 59—60
Molecular systems, three-state molecular system, non-adiabatic coupling, quantization, extended Born — Oppenheimer equations 173—174
Molecular systems, three-state molecular system, non-adiabatic coupling, sign flip derivation 73—77
Molecular systems, three-state molecular system, non-adiabatic coupling, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems 113—117
Molecular systems, three-state molecular system, non-adiabatic coupling, theoretical-numeric approach 101—103
Molecular systems, three-state molecular system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices 92
Molecular systems, two-state molecular system, non-adiabatic coupling, Herzberg — Longuet — Higgins phase 185
Molecular systems, two-state molecular system, non-adiabatic coupling, quantization 58—59
Molecular systems, two-state molecular system, non-adiabatic coupling, single conical intersection solution 97—101
Molecular systems, two-state molecular system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices 92
Molecular systems, two-state molecular system, non-adiabatic coupling, “real” system properties 104—112
Molecular systems, two-state molecular system, non-adiabatic coupling, “real” system properties, -molecule: (1, 2) and (2, 3) conical intersections 109—112
Molecular systems, two-state molecular system, non-adiabatic coupling, “real” system properties, -molecule: (1, 2) and (2, 3) conical intersections, “real” two-state systems 109—112
Molecular systems, two-state molecular system, non-adiabatic coupling, “real” system properties, system and isotopic analogues 103—109
Molecular systems, Yang — Mills fields, alternative derivation 254—255
Molecular systems, Yang — Mills fields, curl condition 252—253
Molecular systems, Yang — Mills fields, future implications 255—257
Molecular systems, Yang — Mills fields, Hamiltonian formalism, observability in 259—261
Molecular systems, Yang — Mills fields, nuclear Lagrangean equation 249—250
Molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields 251—252
Molecular systems, Yang — Mills fields, tensorial field vanishing criteria 257—259
Molecular systems, Yang — Mills fields, untruncated Hilbert space 253—254
Molecular-fixed coordinates, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation 514—516
Molnar, F. 411(243) 431
Molteni, C. 360(76) 426
Momentum operator, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system 157—168
Montgomery, J.A. 363(95) 426 363(96) 426
Moody, J. 204(77 79) 250(77 79) 253(79) 275
Moonaw, W.R. 381(172) 429
Moore, C.E. 573(34) 581
Moore, D.J. 200(13) 210(13) 222(13) 273
Morais, V.M.F. 712(80) 740
Morales, J.A. 339(35) 344—345(42—43) 348(51) 352—353
MORBID Hamiltonian, Renner — Teller effect, triatomic molecules, benchmark handling 621—623
Morokuma, K. 363(95) 426 579(36—37) 581
Morpurgo, A.F. 248(309) 281
Morrison, R.J.S. 341(39—40) 353
Morse oscillator, non-adiabatic coupling, quantum dressed classical mechanics 179
Morse oscillator, non-adiabatic coupling, quasiclassical trajectory (QCT) calculation, three-particle reactive system, reaction 160—163
Morse oscillator, non-adiabatic coupling, semiclassical calculation, reaction 164—167
Morse oscillator, Renner — Teller effect, triatomic molecules, benchmark handling 622—623
Morse potentials, direct molecular dynamics, Gaussian wavepacket propagation 378—383
Morse, P.M. 291(70) 321
Moskalev, A.N. 661(36) 739
Mosnow-Seeuws, F. 284(18—19) 320
Mott, N.F. 203(65) 254(65) 275 339—340(31) 352
Motzkus, M. 211(182—183) 278
Moussa, M.H.Y. 206(110) 276
Msezane, A.S. 213(235) 279
Mueller, A.M. 434(3) 479(3) 500
Mueller, K.T. 248(307) 281
Mueller, U. 404(227) 430
Muerz, P. 624(125—126) 656
Mukamel, S. 204(88 99) 211(88) 275—276 375(139) 428
Mulder, J.J. 438(31—32) 448(32) 450—451(32) 453(32) 487(33) 493(31) 494(31—32) 456(57) 500—501
Muller, A. 208(143) 277
Mulliken population, electron nuclear dynamics (END), intramolecular electron transfer 349—351
Mulliken, R.S. 349(60) 353
Multiconfiguration self-consistent field (MCSCF) technique, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 404—411
Multiconfiguration self-consistent field (MCSCF) technique, direct molecular dynamics, theoretical background 358—361
Multiconfiguration self-consistent field (MCSCF) technique, direct molecular dynamics, vibronic coupling, diabatic representation 385—386
Multiconfiguration time-dependent Hartree (MCTDH) method, direct molecular dynamics, Gaussian wavepacket propagation 380—381
Multiconfiguration time-dependent Hartree (MCTDH) method, direct molecular dynamics, nuclear motion Schroedinger equation 364—373
Multiconfiguration time-dependent Hartree (MCTDH) method, direct molecular dynamics, theoretical background 357—361
Multidegenerate conditions, molecular system non-linearities 233—249
Multidegenerate conditions, molecular system non-linearities, adiabatic-to-diabatic transformation 241—242
Multidegenerate conditions, molecular system non-linearities, component phase continuous tracing 236—241
Multidegenerate conditions, molecular system non-linearities, conical intersection pairing 235—236
Multidegenerate conditions, molecular system non-linearities, direct integration 242—243
Multidegenerate conditions, molecular system non-linearities, experimental phase probing 248—249
Multidegenerate conditions, molecular system non-linearities, Jahn — Teller/Renner — Teller coupling effects 243—248
Multidegenerate conditions, molecular system non-linearities, Jahn — Teller/Renner — Teller coupling effects, complex representation 243—244
Multidegenerate conditions, molecular system non-linearities, Jahn — Teller/Renner — Teller coupling effects, generalized Renner — Teller coupling 247
Multidegenerate conditions, molecular system non-linearities, Jahn — Teller/Renner — Teller coupling effects, off-diagonal coupling 246—247
Multidegenerate conditions, molecular system non-linearities, Jahn — Teller/Renner — Teller coupling effects, off-diagonal element squaring 245—246
Multidegenerate conditions, non-adiabatic coupling 80—81
Multidegenerate conditions, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices 91—92
Multiple independent spawning (MIS), direct molecular dynamics, non-adiabatic coupling 402
Multiple spawning, direct molecular dynamics, ab initio multiple spawning 411—414
Multiple spawning, direct molecular dynamics, non-adiabatic coupling 399—402
Multivalued matrix elements, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix 126—132
Multivalued matrix elements, non-adiabatic coupling, Herzberg — Longuet — Higgins phase, Jahn — Teller model 185—186
Multivalued matrix elements, non-adiabatic coupling, minimal diabatic potential matrix 83—89
Murao, T. 381(171) 429
Murphy, G.M. 291(71) 321
Murrell, J.N. 41(30) 121(30) 139 464(75) 468(75) 502 676(57) 693(66) 698(74) 716(74) 740
Myanlin, V.A. 671(55) 673(55) 740
Myers, T.L. 234(280) 281
Mystery band, direct molecular dynamics, vibronic coupling 381—382
Naik, P.D. 458(63) 487(63) 501
Nakamura, H. 67(90) 141 201(45) 214(45) 274
Nalewajski, R.F. 693(70) 699(70) 740
Nanayakkara, A. 363(95) 426 487—488(107) 503
Nanbu, S. 82(103) 118(103) 141
Narozhny, N.B. 212(198) 278
Naturforsch, Z. 144(15) 194
Nauts, A. 41(50—51) 140 242(294) 281
Near-adiabatic limit, molecular systems, component amplitude analysis 220—224
Near-degenerate states, permutational symmetry, vibrational levels 728—733
Nebot-Gil, I. 472(80) 502
Neogrady, P. 363(97) 427
Neuhauser, D. 286(58) 321 365(114—115) 406(235) 427 430 660(26) 739
Neumann boundary conditions, electronic states, adiabatic-to-diabatic transformation, two-state system 304—309
Neumark, D.M. 626(151) 657
Newton — Raphson equation, conical intersection location, locations 565
Newton — Raphson equation, conical intersection location, orthogonal coordinates 567
Newton, M.D. 349(59) 353
Newton, R.G. 340(38) 353
Ng, C.Y. 82(96) 118(96) 141
Nguyen, K. 363(96) 426
Nicole, G 204(94) 207(94) 275
Niederjohann, B. 167(86) 196
Niedner, G. 345(46) 353 346—347(50) 353
Niedner-Schatteburg, G. 82(95) 118(95) 141 345(48) 353
Nieplocha, J. 363(99) 427
Nieto, M.M. 200(27) 207(27) 274
Nikitin, E.E. 67(92) 82(98) 141 201(44—45) 214(44—45) 274 284(9) 320 345(47) 353 397(200) 429 664(40) 739
Nikonov, D.E. 230—232(262) 280
Ðåêëàìà