Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Àâòîðû: Michael Baer, Gert D.Billing
Àííîòàöèÿ: Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.
This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.
Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 05.08.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Visicot, J.P. 434(5) 500
Vogel, W. 204(92) 208(92) 211(92) 213(92) 275
Volobuev, Y. 399(213 215) 403(213 215) 430
Von Busch, H. 248(310) 281
von Neumann, J. 5(19) 37 215(242) 226(255) 261(242) 280 558(3) 561(3) 580
von Niessen, W. 381(170) 393(170) 429
Voronin, A.I. 696(71) 719(88) 740—741
Vorontsov, Yu.I. 208(140 142) 277
Voter, A.F. 435—436(24) 447(39) 453(39) 455(24) 474(24) 493(39) 500—501
Voth, G. 360(75) 426
Vourdas, A. 207(132) 276
Vrakking, M.J.J. 212(200) 278 458(61—62) 460(61—62) 487(61—62) 501
Vreven, T. 360(80 86—87) 406(233) 408(80) 410(86) 411—412(87) 426 430
Vrtilek, J.M. 633—634(164) 658
Wagh, A.G. 207(123—124) 208(124) 248(123) 276
Walch, S.P. 571(28) 581
Walmsley, I.A. 204(88 92 96) 208(92) 211(88 92 96) 213(92) 275
Walsh, A.D. 617(70) 655
Walsworth, R.L. 249(316) 282
Walter, J. 499(140) 504
Walton, A. 380(157—158) 428
Wang, I. 360(66) 371(66) 425
Wang, J. 3(17) 20(17) 37 248(310) 281
Wang, L.C 118(129) 142
Wang, L.S. 625(136) 657
Wang, P.-R. 624(127) 657
Wang, W. 633—634(164) 658
Warhurst, E. 435(17) 447(17) 494(17) 500
Warshel, A. 359(61—62) 360(67) 371(67) 411(241) 425 430
Waschewsky, G.C.G 234(280) 281
Wash, P.W. 234(280) 281
Watson, G.N. 25(32) 34(32) 37
Watson, J.K.G. 610(41—42) 654
Wave function, conical intersection, anchors, molecules and independent quantum species 440—441
Wave function, conical intersection, two-state chemical reactions 437—438
Wave function, crude Born — Oppenheimer approximation, basic principles 507—512
Wave function, crude Born — Oppenheimer approximation, Coulomb potential derivatives 527—542
Wave function, crude Born — Oppenheimer approximation, Coulomb potential derivatives, first-order derivatives 529—535
Wave function, crude Born — Oppenheimer approximation, Coulomb potential derivatives, second-order derivatives 535—542
Wave function, degenerate states chemistry xii—xiii
Wave function, direct molecular dynamics, propagation mechanisms 422—423
Wave function, direct molecular dynamics, vibronic coupling, diabatic representation 384—386
Wave function, electron nuclear dynamics (END), basic ansatz 330—333
Wave function, electron nuclear dynamics (END), molecular systems, final-state analysis 342—349
Wave function, electron nuclear dynamics (END), time-dependent variational principle (TDVP) 328—330
Wave function, electronic states, adiabatic-to-diabatic transformation, two-state system 303—309
Wave function, geometric phase theory, eigenvector evolution 11—17
Wave function, molecular systems, component amplitude analysis, cyclic wave functions 224—228
Wave function, molecular systems, phase factors 205—214
Wave function, non-adiabatic coupling, Born — Oppenheimer approximation 187—191
Wave function, non-adiabatic coupling, semiclassical calculation, reaction 164—167
Wave function, permutational symmetry, electronic wave function 680—682
Wave function, permutational symmetry, rotational wave function 683—687
Wave function, permutational symmetry, rovibronic/vibronic wave functions 682—683
Wave function, permutational symmetry, total molecular wave function 661—668 674—678
Wave function, permutational symmetry, vibrational wave function 687—692
Wave function, phase-change rule, loop construction, coordinate properties 443—446
Wave function, quantum theory 199—205
Wave function, Renner — Teller effect, triatomic molecules 587—598
Wavepacket reconstruction, direct molecular dynamics, adiabatic systems, initial conditions 373—377
Wavepacket reconstruction, direct molecular dynamics, nuclear motion Schroedinger equation 366—373
Wavepacket reconstruction, direct molecular dynamics, propagation mechanisms 422—423
Wavepacket reconstruction, direct molecular dynamics, theoretical background 357—361
Wavepacket reconstruction, molecular systems, component amplitude analysis, expanding waves 230—232
Wavepacket reconstruction, molecular systems, component amplitude analysis, frozen Gaussian approximation 229—230
Wavepacket reconstruction, molecular systems, component amplitude analysis, one-dimensional free particles 229
Wavepacket reconstruction, molecular systems, component amplitude analysis, reciprocal relations 216—217
Wavepacket reconstruction, techniques 211—212
Weber, T. 200(21) 273
Wei, H. 611(46) 654
Weide, K. 366(117) 427
Weinacht, T.G 200(19) 204(19 95) 211(95) 273 275
Weinberg, S. 203—204(70) 213(70) 250(70) 275
Weiner, B. 337(25) 352
Weingart, O. 411(242) 430
Weis, B. 621(88) 622(88 96) 655—656
Weiss, R. 359(61—62) 425
Welge, K.H. 167(80 82 84—85 87) 196
Welsch, D.-G. 204(92) 208(92) 211(92) 213(92) 275
Wensmann, A. 402—403(222) 430
Wenzel, W. 491(121) 503
Werner, H.-J. 41(6) 41(49) 82(49) 138 140 285(39 41) 321 363(98) 381(173) 385(184) 393(173) 405(231) 427 429—430 481(93) 502 506(1) 555 621(88) 622(88 92) 655—656
Weyl, H. 204(103) 276
Wheeler, J.A. 339(32) 352
Whetten, R. 381(162) 428
Whetton, R.L.K. 3(16) 20(16) 32(16) 37
White, L.S. 458(60) 487(60) 501
Whiteley, T.W.J. 285(40) 321
Whitesides, T.H. 481(94) 502
Whitham, G.B. 265(325) 282
Whitney, R.S. 210(176) 278
Whittaker, E.T. 25(32) 34(32) 37
Whitten, R.C. 106(123) 142 661(31) 739
Widmark, P.-O. 363(97) 427
Wiener, N. 219(248) 280
Wienkoop, M. 624(126) 656
Wigner function, direct molecular dynamics, adiabatic systems 375—377
Wigner function, direct molecular dynamics, Gaussian wavepackets and multiple spawning 402
Wigner function, direct molecular dynamics, recent studies 415
Wigner function, permutational symmetry, dynamic Jahn — Teller and geometric phase effects 708—711
Wigner rotation matrix, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix 89—92
Wigner, E.P. 5(19) 37 89(108) 141 199(5) 213(224) 226(255) 273 279—280 374(137) 375(137 140) 428 558(3) 561(3) 580 661(30) 669(30) 720(93) 739 741
Wilczek, F. 204(77—79) 209(78) 250(77—79) 253(79) 270(78) 275
Wilhelm, T. 410(240) 430
Williams, B.A. 472(79) 502
Williams, R.M. 204(89) 208(89) 211(89) 275
Wilsey, S. 459(65) 490(65) 502
Wilson, E.B. 610(39—40) 654
Wilson, K. 374(135) 428
Windus, T. 363(96) 426
Winnewisser, B.P. 626(160) 657
Winterstetter, M. 506(4) 555
WKB formula, electron nuclear dynamics (END), molecular systems 340—342
WKB formula, electronic states, triatomic quantum reaction dynamics 318
WKB formula, molecular systems, component amplitude analysis, phase-modulus relations 218
Woeste, L. 3(16) 20(16) 32(16) 37 707(78) 740
Wolf, E. 200—201(28) 206(28) 208(28) 211(28) 264(28) 274
Wolf, J.-P. 707(78) 740
Wolfrum, J. 365(111) 427
Wolicox, C.F. 458(59) 501
Wond, M.E. 363(95) 426
Woodward — Hoffman method, conical intersection research 494—496
Woodward — Hoffman method, phase-change rule, pericyclic reactions 450
Woodward — Hoffman method, phase-change rule, pi bond reactions 453
Woodward, R.B. 450(52) 479(52) 493—494(52) 501
Worth, G.A. 357(20) 364(20) 365(109—110) 381(109) 390(109) 393(109 190 192 195) 423(20) 424 427 429 487(100) 491(100) 503
Woywod, C: 285(38) 321 381(173—174) 385(187) 393(173—174) 429 479—480(92) 502 506(1) 555
Wrede, E. 167(80 82—87) 196
Wright, E.M. 210(171) 214(171) 278
Wright, S.C. 448(50) 501
Wright, T.G. 467(77) 469—470(77) 502
Wu, G.S. 326(7) 352
Wu, T.T. 43(76) 140 209(156) 234(156) 277 506(10) 555
Wu, T.Y. 212(211) 248(211) 279
Wu, X. 145(47) 150(47) 164(47) 195
Wu, Y.-S.M. 41(45) 106(121—122) 140 142 145(44—46) 150(44—46) 164(44—46) 167(46) 195 242(289) 281 285(33—37) 290(33) 310(33—37) 315—319(33) 320 668(48—49) 716(83) 739—740
Wurzer, A.J. 410(240) 430
Wyatt, R.E. 144(12) 145(47) 150(47) 164(47) 167(80) 194—196 207(128) 276 285(29) 320 364(106—107) 427
Xantheas, S. 388(189) 410(189) 429 438(33) 487(33) 500 558(5) 576(35) 580—581
Xiao, L. 397(205) 399(205) 403(205) 429
Xing, X. 484(99) 503
Xu, H. 145(51—52) 195
Xu, R. 82(96) 118(96) 141
Xu, Z. 359(56) 425
Xu, Z.-R. 13(25) 28(25) 37 41(11) 42—43(11) 73(11) 104(11) 107(11) 109(11) 139 145(34) 195 233(271—272) 280
Xu, Z.R. 660(4—8 11—12) 668(4—5 11—12) 693(5) 701—703(11) 704(12) 705(11—12) 706(11 77) 708(12) 709(11) 713(4—5 7—8) 715(4) 716(5) 717(6 8) 719—721(4—5) 738 740
Yahalom, A. 13(26) 28(26) 37 41(12 24 28) 42—43(12) 71(12) 73(12) 80(24) 99(12) 102(12) 104(12) 109(12) 111(12) 117(12) 118(126) 139 142 200(29—35 37—38) 202(61) 203(73) 204(34) 206(30—32) 210(30—32) 213(34) 222(29) 229(29) 242(29—32) 248(61) 264(31 33) 271(33) 274—275 359(57) 425
Yamaguchi, M. 455(56) 501 506(9) 555
Yamamoto, N. 406(233) 430
Yamanaka, T. 381(171) 429
Yamashita, K. 622(96) 656
Yamazaki, I. 381(171) 429
Yan, F. 210(167) 277
Yang — Mills fields, degenerate states chemistry xi—xiii
Yang — Mills fields, molecular systems, alternative derivation 254—255
Yang — Mills fields, molecular systems, curl condition 252—253
Yang — Mills fields, molecular systems, future implications 255—257
Yang — Mills fields, molecular systems, Hamiltonian formalism, observability in 259—261
Yang — Mills fields, molecular systems, nuclear Lagrangean equation 249—250
Yang — Mills fields, molecular systems, pure vs. tensorial gauge fields 251—252
Yang — Mills fields, molecular systems, tensorial field vanishing criteria 257—259
Yang — Mills fields, molecular systems, untruncated Hilbert space 253—254
Yang — Mills fields, non-adiabatic coupling 42—44
Yang — Mills fields, non-adiabatic coupling, curl condition 92—97
Yang — Mills fields, non-adiabatic coupling, future research applications 118—119
Yang — Mills fields, theoretical background 203—205
Yang, B. 625(146) 639(146) 657
Yang, C.N. 42(58) 43(76) 93(58) 140 203(66) 209(156) 213(66) 234(156) 250(66) 275 277
Yang, L. 210(167) 277
Yang, X. 211(186) 248(186) 278
Yang, X.F. 211(186) 248(186) 278
Yarkony, D.R. 10(23) 37 41(46) 42—43(64—71) 71(66) 97(64—71) 104(64—71) 109(64) 118(64—71) 140 202(50 53) 233(270 273) 234(273 277 283) 236(285) 242(273 283) 246—247(270) 274 280—281 285(43 54) 290(43 65—68) 297(43) 301(54 77—82) 303(84) 308(84) 321—322 359(55) 382(176—178) 385(55) 405(232) 406(232 234) 425 429—430 434(11) 471(11) 488(108—109) 500 503 558(1 4 7) 559(8—10 12) 560(17) 561(8) 563(12) 564(7) 565(7 17) 567(18—21) 568(10) 569(20 23) 570(10) 571(8 26—27 29—30) 572(30—32) 573(33) 576(23) 580—581 660(22—23) 715—716(81) 739—740
Yoshihara, K. 381(171) 429
Yu, H.G. 233(271) 280 285(30) 320 660(1—2 4—8 11 27) 661(2) 668(2 11) 699(27) 701—703(11) 705—706(11) 709(11) 713(2) 716(1) 738—739
Zakrzewski, V.G. 363(95) 426
Zare, R.N. 145(49—52) 195 286(56—59) 321 341(39—40) 348(52) 353 613(59) 655
Zeh, H.D. 204(101) 212(101) 276
Zeidler, D. 211(183) 278
Zeilinger, A. 206(119) 207(129) 276
Zener, C. 67(88) 141 284(4 7) 320 397(209) 430
Zeroth-order approximation, crude Born — Oppenheimer approximation, basic principles 510—512
Zeroth-order approximation, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation 547—550
Zeroth-order approximation, Renner — Teller effect, tetraatomic molecules 629—631
Zeroth-order approximation, Renner — Teller effect, tetraatomic molecules, perturbative handling, delta electronic states 647—653
Zeroth-order approximation, Renner — Teller effect, tetraatomic molecules, perturbative handling, pi electronic states 644—646
Zeroth-order approximation, Renner — Teller effect, triatomic molecules 596—598
Zewail, A.H. 211(179) 278 326(5) 352 434(4) 458(64) 487(64) 500—501
Zhang, D. 361(94) 426
Zhang, D.H. 660(15) 739
Zhang, J.Z.H. 285(29 31) 320 660(15) 739
Zhang, W.M. 212(207) 279
Zhu, C. 667(90) 141
Zhu, W. 285(31) 320
Zhu, Y.F. 625(135) 657
Zigmund, A. 224(254) 280
Zilberg, S. 211(192) 248(192) 278 435(25) 436(27—28) 438(28) 447(25 40—41) 448(27—28 40 48—49) 449(28 51) 453(49) 483(28 49 98) 492(40—41) 496(138) 500—501 503—504
Zimmerman, H. 357(12) 424 435(20—21) 448(21) 450(21) 453(20) 494(20) 500
Zimmermann, H.E. 459(66) 482(97) 502
Zubairy, M.S. 201(41) 206—207(41) 274
Zuber, J.-B. 203(68) 204(68) 250(68) 275
Zucchetti, A. 204(92) 208(92) 211(92) 213(92) 275
Zucchini, G.L. 481—482(95) 502
Zulicke, L. 664(40) 739
Zuniga, J. 661(35) 739
Zurek, W.H. 212(216) 279
Zwanziger — Grant effect, phase-change rule, cyclopentadienyl cation (CPDC) 471—472
Zwanziger, J.W. 3(16) 20(16) 22(30) 32(16) 37 41(22) 68(22) 71(22) 117(22) 139 228(256) 232(265) 233(256) 245(256) 280 471(78) 502
Zygelman, B. 203(75) 204(80) 250(80) 275
“Isomorfic Hamiltonian”, Renner — Teller effect, triatomic molecules 618
“Tracing” techniques, molecular systems, multidegenerate nonlinear coupling, continuous tracing, component phase 236—241
“Tracing” techniques, molecular systems, multidegenerate nonlinear coupling, research background 234
Ðåêëàìà