Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Visicot, J.P.      434(5) 500
Vogel, W.      204(92) 208(92) 211(92) 213(92) 275
Volobuev, Y.      399(213 215) 403(213 215) 430
Von Busch, H.      248(310) 281
von Neumann, J.      5(19) 37 215(242) 226(255) 261(242) 280 558(3) 561(3) 580
von Niessen, W.      381(170) 393(170) 429
Voronin, A.I.      696(71) 719(88) 740—741
Vorontsov, Yu.I.      208(140 142) 277
Voter, A.F.      435—436(24) 447(39) 453(39) 455(24) 474(24) 493(39) 500—501
Voth, G.      360(75) 426
Vourdas, A.      207(132) 276
Vrakking, M.J.J.      212(200) 278 458(61—62) 460(61—62) 487(61—62) 501
Vreven, T.      360(80 86—87) 406(233) 408(80) 410(86) 411—412(87) 426 430
Vrtilek, J.M.      633—634(164) 658
Wagh, A.G.      207(123—124) 208(124) 248(123) 276
Walch, S.P.      571(28) 581
Walmsley, I.A.      204(88 92 96) 208(92) 211(88 92 96) 213(92) 275
Walsh, A.D.      617(70) 655
Walsworth, R.L.      249(316) 282
Walter, J.      499(140) 504
Walton, A.      380(157—158) 428
Wang, I.      360(66) 371(66) 425
Wang, J.      3(17) 20(17) 37 248(310) 281
Wang, L.C      118(129) 142
Wang, L.S.      625(136) 657
Wang, P.-R.      624(127) 657
Wang, W.      633—634(164) 658
Warhurst, E.      435(17) 447(17) 494(17) 500
Warshel, A.      359(61—62) 360(67) 371(67) 411(241) 425 430
Waschewsky, G.C.G      234(280) 281
Wash, P.W.      234(280) 281
Watson, G.N.      25(32) 34(32) 37
Watson, J.K.G.      610(41—42) 654
Wave function, conical intersection, anchors, molecules and independent quantum species      440—441
Wave function, conical intersection, two-state chemical reactions      437—438
Wave function, crude Born — Oppenheimer approximation, basic principles      507—512
Wave function, crude Born — Oppenheimer approximation, Coulomb potential derivatives      527—542
Wave function, crude Born — Oppenheimer approximation, Coulomb potential derivatives, first-order derivatives      529—535
Wave function, crude Born — Oppenheimer approximation, Coulomb potential derivatives, second-order derivatives      535—542
Wave function, degenerate states chemistry      xii—xiii
Wave function, direct molecular dynamics, propagation mechanisms      422—423
Wave function, direct molecular dynamics, vibronic coupling, diabatic representation      384—386
Wave function, electron nuclear dynamics (END), basic ansatz      330—333
Wave function, electron nuclear dynamics (END), molecular systems, final-state analysis      342—349
Wave function, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      328—330
Wave function, electronic states, adiabatic-to-diabatic transformation, two-state system      303—309
Wave function, geometric phase theory, eigenvector evolution      11—17
Wave function, molecular systems, component amplitude analysis, cyclic wave functions      224—228
Wave function, molecular systems, phase factors      205—214
Wave function, non-adiabatic coupling, Born — Oppenheimer approximation      187—191
Wave function, non-adiabatic coupling, semiclassical calculation, $D+H_2$ reaction      164—167
Wave function, permutational symmetry, electronic wave function      680—682
Wave function, permutational symmetry, rotational wave function      683—687
Wave function, permutational symmetry, rovibronic/vibronic wave functions      682—683
Wave function, permutational symmetry, total molecular wave function      661—668 674—678
Wave function, permutational symmetry, vibrational wave function      687—692
Wave function, phase-change rule, loop construction, coordinate properties      443—446
Wave function, quantum theory      199—205
Wave function, Renner — Teller effect, triatomic molecules      587—598
Wavepacket reconstruction, direct molecular dynamics, adiabatic systems, initial conditions      373—377
Wavepacket reconstruction, direct molecular dynamics, nuclear motion Schroedinger equation      366—373
Wavepacket reconstruction, direct molecular dynamics, propagation mechanisms      422—423
Wavepacket reconstruction, direct molecular dynamics, theoretical background      357—361
Wavepacket reconstruction, molecular systems, component amplitude analysis, expanding waves      230—232
Wavepacket reconstruction, molecular systems, component amplitude analysis, frozen Gaussian approximation      229—230
Wavepacket reconstruction, molecular systems, component amplitude analysis, one-dimensional free particles      229
Wavepacket reconstruction, molecular systems, component amplitude analysis, reciprocal relations      216—217
Wavepacket reconstruction, techniques      211—212
Weber, T.      200(21) 273
Wei, H.      611(46) 654
Weide, K.      366(117) 427
Weinacht, T.G      200(19) 204(19 95) 211(95) 273 275
Weinberg, S.      203—204(70) 213(70) 250(70) 275
Weiner, B.      337(25) 352
Weingart, O.      411(242) 430
Weis, B.      621(88) 622(88 96) 655—656
Weiss, R.      359(61—62) 425
Welge, K.H.      167(80 82 84—85 87) 196
Welsch, D.-G.      204(92) 208(92) 211(92) 213(92) 275
Wensmann, A.      402—403(222) 430
Wenzel, W.      491(121) 503
Werner, H.-J.      41(6) 41(49) 82(49) 138 140 285(39 41) 321 363(98) 381(173) 385(184) 393(173) 405(231) 427 429—430 481(93) 502 506(1) 555 621(88) 622(88 92) 655—656
Weyl, H.      204(103) 276
Wheeler, J.A.      339(32) 352
Whetten, R.      381(162) 428
Whetton, R.L.K.      3(16) 20(16) 32(16) 37
White, L.S.      458(60) 487(60) 501
Whiteley, T.W.J.      285(40) 321
Whitesides, T.H.      481(94) 502
Whitham, G.B.      265(325) 282
Whitney, R.S.      210(176) 278
Whittaker, E.T.      25(32) 34(32) 37
Whitten, R.C.      106(123) 142 661(31) 739
Widmark, P.-O.      363(97) 427
Wiener, N.      219(248) 280
Wienkoop, M.      624(126) 656
Wigner function, direct molecular dynamics, adiabatic systems      375—377
Wigner function, direct molecular dynamics, Gaussian wavepackets and multiple spawning      402
Wigner function, direct molecular dynamics, recent studies      415
Wigner function, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      708—711
Wigner rotation matrix, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix      89—92
Wigner, E.P.      5(19) 37 89(108) 141 199(5) 213(224) 226(255) 273 279—280 374(137) 375(137 140) 428 558(3) 561(3) 580 661(30) 669(30) 720(93) 739 741
Wilczek, F.      204(77—79) 209(78) 250(77—79) 253(79) 270(78) 275
Wilhelm, T.      410(240) 430
Williams, B.A.      472(79) 502
Williams, R.M.      204(89) 208(89) 211(89) 275
Wilsey, S.      459(65) 490(65) 502
Wilson, E.B.      610(39—40) 654
Wilson, K.      374(135) 428
Windus, T.      363(96) 426
Winnewisser, B.P.      626(160) 657
Winterstetter, M.      506(4) 555
WKB formula, electron nuclear dynamics (END), molecular systems      340—342
WKB formula, electronic states, triatomic quantum reaction dynamics      318
WKB formula, molecular systems, component amplitude analysis, phase-modulus relations      218
Woeste, L.      3(16) 20(16) 32(16) 37 707(78) 740
Wolf, E.      200—201(28) 206(28) 208(28) 211(28) 264(28) 274
Wolf, J.-P.      707(78) 740
Wolfrum, J.      365(111) 427
Wolicox, C.F.      458(59) 501
Wond, M.E.      363(95) 426
Woodward — Hoffman method, conical intersection research      494—496
Woodward — Hoffman method, phase-change rule, pericyclic reactions      450
Woodward — Hoffman method, phase-change rule, pi bond reactions      453
Woodward, R.B.      450(52) 479(52) 493—494(52) 501
Worth, G.A.      357(20) 364(20) 365(109—110) 381(109) 390(109) 393(109 190 192 195) 423(20) 424 427 429 487(100) 491(100) 503
Woywod, C:      285(38) 321 381(173—174) 385(187) 393(173—174) 429 479—480(92) 502 506(1) 555
Wrede, E.      167(80 82—87) 196
Wright, E.M.      210(171) 214(171) 278
Wright, S.C.      448(50) 501
Wright, T.G.      467(77) 469—470(77) 502
Wu, G.S.      326(7) 352
Wu, T.T.      43(76) 140 209(156) 234(156) 277 506(10) 555
Wu, T.Y.      212(211) 248(211) 279
Wu, X.      145(47) 150(47) 164(47) 195
Wu, Y.-S.M.      41(45) 106(121—122) 140 142 145(44—46) 150(44—46) 164(44—46) 167(46) 195 242(289) 281 285(33—37) 290(33) 310(33—37) 315—319(33) 320 668(48—49) 716(83) 739—740
Wurzer, A.J.      410(240) 430
Wyatt, R.E.      144(12) 145(47) 150(47) 164(47) 167(80) 194—196 207(128) 276 285(29) 320 364(106—107) 427
Xantheas, S.      388(189) 410(189) 429 438(33) 487(33) 500 558(5) 576(35) 580—581
Xiao, L.      397(205) 399(205) 403(205) 429
Xing, X.      484(99) 503
Xu, H.      145(51—52) 195
Xu, R.      82(96) 118(96) 141
Xu, Z.      359(56) 425
Xu, Z.-R.      13(25) 28(25) 37 41(11) 42—43(11) 73(11) 104(11) 107(11) 109(11) 139 145(34) 195 233(271—272) 280
Xu, Z.R.      660(4—8 11—12) 668(4—5 11—12) 693(5) 701—703(11) 704(12) 705(11—12) 706(11 77) 708(12) 709(11) 713(4—5 7—8) 715(4) 716(5) 717(6 8) 719—721(4—5) 738 740
Yahalom, A.      13(26) 28(26) 37 41(12 24 28) 42—43(12) 71(12) 73(12) 80(24) 99(12) 102(12) 104(12) 109(12) 111(12) 117(12) 118(126) 139 142 200(29—35 37—38) 202(61) 203(73) 204(34) 206(30—32) 210(30—32) 213(34) 222(29) 229(29) 242(29—32) 248(61) 264(31 33) 271(33) 274—275 359(57) 425
Yamaguchi, M.      455(56) 501 506(9) 555
Yamamoto, N.      406(233) 430
Yamanaka, T.      381(171) 429
Yamashita, K.      622(96) 656
Yamazaki, I.      381(171) 429
Yan, F.      210(167) 277
Yang — Mills fields, degenerate states chemistry      xi—xiii
Yang — Mills fields, molecular systems, alternative derivation      254—255
Yang — Mills fields, molecular systems, curl condition      252—253
Yang — Mills fields, molecular systems, future implications      255—257
Yang — Mills fields, molecular systems, Hamiltonian formalism, observability in      259—261
Yang — Mills fields, molecular systems, nuclear Lagrangean equation      249—250
Yang — Mills fields, molecular systems, pure vs. tensorial gauge fields      251—252
Yang — Mills fields, molecular systems, tensorial field vanishing criteria      257—259
Yang — Mills fields, molecular systems, untruncated Hilbert space      253—254
Yang — Mills fields, non-adiabatic coupling      42—44
Yang — Mills fields, non-adiabatic coupling, curl condition      92—97
Yang — Mills fields, non-adiabatic coupling, future research applications      118—119
Yang — Mills fields, theoretical background      203—205
Yang, B.      625(146) 639(146) 657
Yang, C.N.      42(58) 43(76) 93(58) 140 203(66) 209(156) 213(66) 234(156) 250(66) 275 277
Yang, L.      210(167) 277
Yang, X.      211(186) 248(186) 278
Yang, X.F.      211(186) 248(186) 278
Yarkony, D.R.      10(23) 37 41(46) 42—43(64—71) 71(66) 97(64—71) 104(64—71) 109(64) 118(64—71) 140 202(50 53) 233(270 273) 234(273 277 283) 236(285) 242(273 283) 246—247(270) 274 280—281 285(43 54) 290(43 65—68) 297(43) 301(54 77—82) 303(84) 308(84) 321—322 359(55) 382(176—178) 385(55) 405(232) 406(232 234) 425 429—430 434(11) 471(11) 488(108—109) 500 503 558(1 4 7) 559(8—10 12) 560(17) 561(8) 563(12) 564(7) 565(7 17) 567(18—21) 568(10) 569(20 23) 570(10) 571(8 26—27 29—30) 572(30—32) 573(33) 576(23) 580—581 660(22—23) 715—716(81) 739—740
Yoshihara, K.      381(171) 429
Yu, H.G.      233(271) 280 285(30) 320 660(1—2 4—8 11 27) 661(2) 668(2 11) 699(27) 701—703(11) 705—706(11) 709(11) 713(2) 716(1) 738—739
Zakrzewski, V.G.      363(95) 426
Zare, R.N.      145(49—52) 195 286(56—59) 321 341(39—40) 348(52) 353 613(59) 655
Zeh, H.D.      204(101) 212(101) 276
Zeidler, D.      211(183) 278
Zeilinger, A.      206(119) 207(129) 276
Zener, C.      67(88) 141 284(4 7) 320 397(209) 430
Zeroth-order approximation, crude Born — Oppenheimer approximation, basic principles      510—512
Zeroth-order approximation, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation      547—550
Zeroth-order approximation, Renner — Teller effect, tetraatomic molecules      629—631
Zeroth-order approximation, Renner — Teller effect, tetraatomic molecules, perturbative handling, delta electronic states      647—653
Zeroth-order approximation, Renner — Teller effect, tetraatomic molecules, perturbative handling, pi electronic states      644—646
Zeroth-order approximation, Renner — Teller effect, triatomic molecules      596—598
Zewail, A.H.      211(179) 278 326(5) 352 434(4) 458(64) 487(64) 500—501
Zhang, D.      361(94) 426
Zhang, D.H.      660(15) 739
Zhang, J.Z.H.      285(29 31) 320 660(15) 739
Zhang, W.M.      212(207) 279
Zhu, C.      667(90) 141
Zhu, W.      285(31) 320
Zhu, Y.F.      625(135) 657
Zigmund, A.      224(254) 280
Zilberg, S.      211(192) 248(192) 278 435(25) 436(27—28) 438(28) 447(25 40—41) 448(27—28 40 48—49) 449(28 51) 453(49) 483(28 49 98) 492(40—41) 496(138) 500—501 503—504
Zimmerman, H.      357(12) 424 435(20—21) 448(21) 450(21) 453(20) 494(20) 500
Zimmermann, H.E.      459(66) 482(97) 502
Zubairy, M.S.      201(41) 206—207(41) 274
Zuber, J.-B.      203(68) 204(68) 250(68) 275
Zucchetti, A.      204(92) 208(92) 211(92) 213(92) 275
Zucchini, G.L.      481—482(95) 502
Zulicke, L.      664(40) 739
Zuniga, J.      661(35) 739
Zurek, W.H.      212(216) 279
Zwanziger — Grant effect, phase-change rule, cyclopentadienyl cation (CPDC)      471—472
Zwanziger, J.W.      3(16) 20(16) 22(30) 32(16) 37 41(22) 68(22) 71(22) 117(22) 139 228(256) 232(265) 233(256) 245(256) 280 471(78) 502
Zygelman, B.      203(75) 204(80) 250(80) 275
“Isomorfic Hamiltonian”, Renner — Teller effect, triatomic molecules      618
“Tracing” techniques, molecular systems, multidegenerate nonlinear coupling, continuous tracing, component phase      236—241
“Tracing” techniques, molecular systems, multidegenerate nonlinear coupling, research background      234
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå