Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Àâòîðû: Michael Baer, Gert D.Billing
Àííîòàöèÿ: Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.
This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.
Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 05.08.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Rotational couplings, electronic states 284—286
Rotational wave function, permutational symmetry 683—687
Rovibrational states, electron nuclear dynamics (END), molecular systems, final-state analysis 344—349
Rovibronic wave function, permutational symmetry 682—683
Rowland, C. 494(130) 503
Royer, A. 206(107) 276
Rozenbaum, V.M. 42—43(73) 94(73) 104(73) 109(73) 111(73) 116(73) 118(73) 140
Rucker, S.P. 232(265) 280
Ruedenberg, K. 285(48) 301(48) 321 388(189) 410(189) 429 438(33) 487(33 107) 488(107) 500 503 558(5) 576(35) 580—581
Ruggiero, A.J. 211(184) 278
Rydberg states, Renner — Teller effect, tetraatomic molecules 625
Rydberg states, wavepacket revivals 212
Rys, J. 515(15) 553(15) 555
Rys’ polynomials, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation 515—516
Rys’ polynomials, integral equations 553—555
Sabin, J.R. 338(27—29) 339(27) 352
Sack, R.A. 2—3(2) 9(2) 18—20(2) 31(2) 36 41—42(14) 53(14) 106(14) 121(14) 139 145(36) 195
Sadlej, A. 363(97) 427
Sadygov, R.G. 42(68 70) 43(68 70) 97(68 70) 104(68 70) 118(68 70) 140 301(81) 322
Saez Rabonos, V. 162(79—80 86) 196
Sainy, R.D. 458(63) 487(63) 501
Saito, S. 625(139) 633(139) 638(139) 640—641(139) 657
Sakurai, H. 478(88) 502
Salem, L. 436(30) 450(30) 473(82) 480(30) 493(30) 494(30 130—131) 495(82 137) 500 502—504
Salpeter, E.E. 571(24) 580
Samuni, U. 473(83) 475(83) 502
Sanchez-Galvez, A. 360(87) 411—412(87) 426
Sanchez-Mondragon, J.J. 212(198) 278
Sands, M. 95(111) 118(111) 141 435(16) 463(16) 456(16) 500
Santoro, F. 491(119) 503
Saraceno, M. 328(19) 352
Sarka, K. 626(159) 657
Satchler, G.R. 33(48) 38
Sathyamurthy, N. 357(18) 364(18) 424
Sato, S. 692(64—65) 740
Savitt, S.F. 204(102) 212(102) 276
Sawada, S. 358(26 33) 379(26) 399(33) 424
Saxe, P. 234(277) 281 290(66) 321
Sayvetz condition, Renner — Teller effect, triatomic molecules 614—615
Sayvetz, A. 614(68) 655
Scandola, F. 481—482(95) 502
Scappini, F. 625(147) 657
Scattering calculations, direct molecular dynamics, nuclear motion Schroedinger equation 365—373
Scattering calculations, electron nuclear dynamics (END), molecular systems, reactive collisions 338—342
Scattering calculations, electronic states, triatomic quantum reaction dynamics 309—319
Scattering calculations, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, quasi-Jahn — Teller scattering calculation 150—155
Scattering calculations, time shifts 213
Schaefer, B. 625—626(144—145) 627(144) 630(144) 631(145) 638(144) 657
Schaefer, H.F. 609(36) 654
Schaefer-Bung, B. 626(151) 657
Schaeffer, H.F. 506(9) 555
Schatz, G.G. 285(40) 321 326(7) 352 365(112—113) 427
Scherer, F. 211(184) 278
Schiff approximation, electron nuclear dynamics (END), molecular systems 339—342
Schiff, L.I. 215(237) 218(237) 229(237) 279 339—340(36) 352 560(14) 580
Schikarski, T. 434(3) 479(3) 500
Schinke, R. 285(38) 321 366(117—118) 374(131) 427—428
Schlegel, H. 358(43) 359(47—48) 360(75 78 86—87) 372(78) 406(233) 410(86) 411—412(87) 425—426 430 489(115) 503 558(6) 580
Schleich, W.P. 200(16 18) 204(16 90 97) 211(16 90) 273 275
Schleyer, P.v.R. 349(53) 353
Schlier, G 345(46) 353
Schmelzer, A. 381(169) 429
Schmid, W.E. 434(3) 479(3) 500
Schmidt, G 624(126) 656
Schmidt, M. 363(96) 405(229) 426 430 458(59) 501
Schmitzer, H. 206(115—116) 276
Schnider, F. 719(91) 741
Schnieder, L. 167(80 82—87) 196
Schoeller, H. 248(311) 281
Schon, J. 145(43) 195
Schricker, A. 207—208(124) 276
Schroeder, D.V. 203—204(69) 250(69) 275
Schroedinger equation, canonical intersection, historical background 145—148
Schroedinger equation, crude Born — Oppenheimer approximation, basic principles 510—512
Schroedinger equation, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian 514—516
Schroedinger equation, degenerate states chemistry xi—xiii
Schroedinger equation, diabatization 42
Schroedinger equation, electronic states, adiabatic-to-diabatic transformation 298—300
Schroedinger equation, electronic states, Born — Huang expansion, adiabatic representation 289
Schroedinger equation, Longuet — Higgins phase-change rule, loop construction 462—472
Schroedinger equation, molecular systems, component amplitude analysis, phase-modulus relations 217—218
Schroedinger equation, molecular systems, component amplitude analysis, time-dependent equation 214—215
Schroedinger equation, molecular systems, component amplitude analysis, time-dependent ground state 220—224
Schroedinger equation, molecular systems, Yang — Mills fields, nuclear Lagrangean 250
Schroedinger equation, non-adiabatic coupling, Born — Oppenheimer approximation 187—191
Schroedinger equation, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state molecular system 174—175
Schroedinger equation, non-adiabatic coupling, Jahn — Teller systems, Longuet — Higgins phase 121—122
Schroedinger equation, non-adiabatic coupling, vector potential, Yang — Mills field 94—95
Schroedinger equation, nuclear motion equation, direct molecular dynamics 363—373
Schroedinger equation, nuclear motion equation, electronic states, adiabatic representation 289—290
Schroedinger equation, nuclear motion equation, electronic states, diabatic representation 292—293
Schroedinger equation, nuclear motion equation, principles of 417—420
Schroedinger equation, permutational symmetry, total molecular wave function 661—668 674—678
Schroedinger equation, quantum theory 199
Schroedinger equation, Renner — Teller effect, tetraatomic molecules, vibronic coupling 628—631
Schroedinger equation, Renner — Teller effect, triatomic molecules 587—598
Schroedinger equation, Renner — Teller effect, triatomic molecules, benchmark handling 621—623
Schroedinger equation, Renner — Teller effect, triatomic molecules, Hamiltonian selection 610—615
Schroedinger equation, time-dependent equation, direct molecular dynamics 356—362
Schroedinger equation, time-dependent equation, direct molecular dynamics, Ehrenfest dynamics 395—397
Schroedinger equation, time-dependent equation, direct molecular dynamics, initial conditions 373—377
Schroedinger equation, time-dependent equation, direct molecular dynamics, trajectory surface hopping 399
Schroedinger equation, time-dependent equation, direct molecular dynamics, vibronic coupling, diabatic representation 385—386
Schroedinger equation, time-dependent equation, electron nuclear dynamics (END), structure and properties 325—327
Schroedinger equation, time-dependent equation, electron nuclear dynamics (END), theoretical background 323—325
Schroedinger equation, time-dependent equation, permutational symmetry 723—728
Schroedinger equation, time-dependent equation, wave function propagation 422—423
Schroedinger equation, time-dependent wave function 214
Schroedinger, E. 263(319) 282
Schuetz, M. 363(97) 427
Schulman, L.S. 212(217) 279
Schumacher, E. 145(38) 195 660(9) 738
Schuster, D.I. 493(128) 503
Schuster, R. 200(17) 273
Schwartz, R.L. 571(28) 581
Schwenke, D.W. 82(101—102) 118(101—102) 141 144(29) 195 398(211) 399(213) 403(211 213 224) 430
Scully, M.N. 201(41) 206—207(41) 274 375(140) 428
Scuseria, G. 360(75) 363(95) 426
Seam loci, conical intersections, spin-orbit interaction, and states 571—572
Seam loci, conical intersections, spin-orbit interaction, algorithms 572—574
Seam loci, conical intersections, spin-orbit interaction, convergence 572—573
Seam loci, conical intersections, spin-orbit interaction, invariant parameters 574—576
Seam loci, conical intersections, spin-orbit interaction, orthogonal parameters 576—578
Seam loci, permutational symmetry, isotopomers 716—717
Sebald, P. 3(17) 20(17) 37 248(310) 281
Second-derivative coupling matrix, crude Born — Oppenheimer approximation, Coulomb potential derivatives 535—542
Second-derivative coupling matrix, direct molecular dynamics, ab initio multiple spawning (AIMS) 412—414
Second-derivative coupling matrix, electronic state adiabatic representation 291—292
Second-derivative coupling matrix, electronic states, adiabatic-to-diabatic transformation, two-state system 304—309
Second-derivative coupling matrix, electronic states, triatomic quantum reaction dynamics, partial wave expansion 313—317
Secrest, D. 611(45) 654
Seekamp-Rahn, K. 167(80 82 86) 196
Segal, G.A. 145(39—40) 195
Seijo, L. 363(97) 427
Self-consistent field (SCF) calculations, electron nuclear dynamics (END), time-dependent variational principle (TDVP) 333—334
Seliger, R.L. 265(325) 282
Selloni, A. 215(238) 218(238) 279 360(70—71) 425
Semiclassical approximation, direct molecular dynamics, non-adiabatic coupling 395—397
Semiclassical approximation, direct molecular dynamics, theoretical background 358—361
Semiclassical approximation, electron nuclear dynamics (END), molecular systems 339—342
Semiclassical approximation, molecular systems 212
Semiclassical approximation, non-adiabatic coupling, Longuet-Higgins phase-based treatment, three-particle reactive system, reaction 163—167
Semiempirical wave functions, direct molecular dynamics 414—415
Semiempirical wave functions, permutational symmetry, potential energy surfaces 692—694
Semple, T.C 474(85) 475(85) 502
Senent, M.L. 622(99) 656
Sepulveda, M.A. 358(29) 424
Serrano-Andres, L. 363(97) 427 472(80) 484(99) 502—503
Shafar-Ray, N.E. 145(52) 195
Shafer, N.E. 286(58—59) 321
Shaik, S.S. 436(26—27) 448(26—27) 449(51) 450(26) 500—501
Shapere, M. 204(77—79) 209(78) 250(77—79) 253(79) 270(78) 275
Shapiro, J.H. 206(121) 208(121) 276
Shapiro, M. 200(16 18) 204(16 84—87 90—91 93) 211(16 84—87 90 196) 275 275 278
Shaw, A. 41(46) 140 303(84) 308(84) 522 715—716(81) 740
Shedaded, R. 625(135) 657
Shepard, R. 363(99) 372(126) 406(126) 427
Shepard, S.R. 206(121) 208(121) 276
Shih, S. 455(56) 501 624(115) 656
Shin, C. 118(130) 142
Shin, S. 118(130) 142
Shinke, R. 660(17) 739
Shirkov, D.V. 263(322) 267(322) 282
Shirley, D.A. 625(136) 657
Shtrikman, H. 200(17) 275
Shvartsman, N. 232(266) 280
Siday, R.E. 209(152) 277
Sidis, V. 41(40) 82(40) 139 144(24) 195 202—203(48) 242(48) 274 285(46) 321 719(90) 741
Siegbahn, P. 104(119) 142 160—161(75) 166(75) 196 363(97) 427
Sign flips, non-adiabatic coupling, geometrical interpretation 77—80
Sign flips, non-adiabatic coupling, three-state molecular system 73—77
Sign flips, permutational symmetry, isotopomers 716—717
Silberberg, Y. 211(181) 278
Silver, D.M. 450(54) 494(54) 501
Simah, D. 285(39) 321
Simon, B. 42(61) 140 209(154) 277
Simon, R. 248(308) 281
Single coordinate model, molecular photochemistry 493—496
Single-surface nuclear dynamics, geometric phase theory 23—31
Single-surface nuclear dynamics, geometric phase theory, molecular Aharonov — Bohm effect, vector-potential theory 25—31
Single-surface nuclear dynamics, geometric phase theory, molecular Aharonov — Bohm effect, vector-potential theory, symmetry properties 28—31
Single-surface nuclear dynamics, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation 150—155
Single-surface nuclear dynamics, permutational symmetry, total molecular wave function 665—668
Single-valued adiabatic state, geometric phase theory, evolution of 12—17
Single-valued adiabatic state, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix 126—132
Single-valued diabatic potentials, non-adiabatic coupling, two-state molecular system and isotopic analogues, -molecule: (1, 2) and (2, 3) conical intersections 111—112
Single-valued potential, adiabatic-to-diabatic transformation matrix, non-adiabatic coupling 49—50
Single-valued potential, adiabatic-to-diabatic transformation matrix, non-adiabatic coupling, topological matrix 50—53
Singlet state molecules, triatomic molecules, vibronic coupling, Renner — Teller effect 598—600
Sjoequist, E. 248(313) 282
Skagerstam, B.-S. 328(21) 552
Skew symmetric matrix, electronic states, adiabatic representation 290—291
Skew symmetric matrix, electronic states, adiabatic-to-diabatic transformation, two-state system 302—309
Skodje, R. 378(148) 428
Slater determinants, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation 542—550
Slater determinants, electron nuclear dynamics (END), molecular systems, final-state analysis 342—349
Slater, J. 550(14) 555
Slater, L. 484(99) 503
Sloane, R. 376(143) 428
Smirnov, B.M. 144(13) 194
Smith, B. 358(43) 359(50 64) 360(79—85) 406(64) 407(79) 408(80—82) 409(83—84) 425—426
Smith, F. 384(181) 429
Smith, F.T. 41(33) 56(33) 106(123) 139 142 203(71) 275 284(10) 301(10) 320 661(31) 739
Smith, S.C 660(27) 699(27) 739
Sobolewski, A.L. 381(173) 393(173) 429 479—480(92) 502 506(1) 555
Sodium iodide, direct molecular dynamics, ab initio multiple spawning 413—414
Soep, B. 434(5) 500
Space-fixed coordinates, permutational symmetry, electronic wave function 680—682
Space-fixed coordinates, permutational symmetry, group theoretical properties 669—674
Space-fixed coordinates, permutational symmetry, total molecular wave function 661—668 674—678
Space-inversion operator, permutational symmetry 722—723
Spiegelman, F. 385(185) 429
Spielfiedel, A. 622(92) 656
Spin function, permutational symmetry, group theoretical properties 669—674
Spin multiplicity, permutational symmetry, dynamic Jahn — Teller and geometric phase effects 706—711
Spin-degenerate systems, geometric phase theory, conical intersections 6—8
Spin-orbit coupling, conical intersections, derivative couplings 569—570
Spin-orbit coupling, conical intersections, electronic Hamiltonian 559
Spin-orbit coupling, conical intersections, future research issues 578—580
Spin-orbit coupling, conical intersections, local topography, conical parameters 569
Spin-orbit coupling, conical intersections, local topography, energy parameters 568—569
Spin-orbit coupling, conical intersections, location 564—565
Spin-orbit coupling, conical intersections, numerical calculations 571—578
Spin-orbit coupling, conical intersections, numerical calculations, and states 571—572
Spin-orbit coupling, conical intersections, numerical calculations, convergence equations 572
Spin-orbit coupling, conical intersections, numerical calculations, orthogonality properties 576—578
Spin-orbit coupling, conical intersections, numerical calculations, seam loci, conical parameters and invariant 574—576
Spin-orbit coupling, conical intersections, numerical calculations, seam loci, parameters 572—574
Spin-orbit coupling, conical intersections, orthogonal intersection adapted coordinates 565—567
Spin-orbit coupling, conical intersections, perturbation theory 561—564
Spin-orbit coupling, conical intersections, research background 558—559
Spin-orbit coupling, conical intersections, time-reversal symmetry 559—561 563—564
Spin-orbit coupling, conical intersections, transformational invariant 567
Spin-orbit coupling, geometric phase theory, Jahn — Teller effect 20—22
Spin-orbit coupling, permutational symmetry 711—712
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, electronic states, ABBA molecules 631—633
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, electronic states, HCCS radical 633—640
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, electronic states, perturbative handling 641—646
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, delta electronic states, perturbative handling 647—653
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, theoretical principles 625—633
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, theoretical principles, Hamiltonian equation 626—628
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, theoretical principles, vibronic problem 628—631
Spin-orbit coupling, Renner — Teller effect, theoretical principles 585—586
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, benchmark handling 621—623
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, effective Hamiltonians 623—624
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, Hamiltonian equations 610—615
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, minimal models 615—618
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, multi-state effects 624
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, pragmatic models 618—621
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, spectroscopic properties 598—610
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, spectroscopic properties, nonlinear molecules 606—610
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, theoretical principles 587—598
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, vibronic coupling and 600—605
Spin-pairing, conical intersection location 492—493
Spin-pairing, conical intersection, anchors, molecules and independent quantum species 439—441
Spin-pairing, conical intersection, two-state systems 437—438
Spin-pairing, phase-change rule, cyclopentadienyl radical (CPDR) 467
Spinor components, molecular systems, modulus-phase formalism, applications 272
Spinor components, molecular systems, modulus-phase formalism, Dirac theory electrons 267—268
Spitznagel, G.W. 349(53) 555
Splitting phenomena, Renner — Teller effect, triatomic molecules, vibronic/spin-orbit coupling 603—605
Sprandel, L.L. 612(52) 655
Springer, M. 145(52) 195
Squillacote, M. 474(85) 475(85) 502
Srinivasan, R. 458(60) 487(60) 501
Staemmler, V. 609(36) 654
Stampfuss, P. 491(121) 503
Stanton, J.F. 326(10) 552
State-averaged orbitals, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 4—5—411
State-to-state transition probability, non-adiabatic coupling, extended Born — Oppenheimer equations 175—177
State-to-state transition probability, non-adiabatic coupling, Longuet — Higgins phase-based treatment 155—157
Steckler, R. 358(44) 425
Stedman, g.e. 200(13) 210(13) 222(13) 275
Stefanov, B.B. 363(95) 426
Steiner, M. 199(6) 275
Stengle, M. 385(187) 429
Stenholm, S. 207(131) 276
Stern, A. 215(241) 218(241) 280
Steven, M.L. 144(29) 195
Stevens, R.M. 144(11) 194 728(94) 741
Stillinger 403(223) 430
Stock, G. 41(42) 82(42) 139 356(1) 374(136) 381(174) 382(1) 384(1) 386(1) 393(174) 395(1) 404(227—228) 423 428—430 491(118) 503
Stokes theorem, geometric phase theory, eigenvector evolution 14—17
Stolow, A. 212(200) 278
Stone, A.J. 10(24) 18(24) 20(24) 57 41(6) 138 209(159) 233(159) 277 442(35) 501
Stone, J.M.R. 614(61) 655
Stone, M. 17(28) 57
Strain, M.C. 363(95) 426
Stratman, R.E. 363(95) 426
Strey, G. 611(43) 654
Stroud, C.R. 200(25) 204(96) 211(25 96 197) 275 275 278
Stuckelberg, E.C.G. 284(6) 320 397(210) 430
Stueckelberg oscillations, direct molecular dynamics, trajectory surface hopping 398—399
Stumpf, M. 660(17) 739
Su, S. 363(96) 426
Sub-Hilbert space, electronic state adiabatic representation, Born — Huang expansion 287—289
Sub-Hilbert space, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework 55—56
Sub-Hilbert space, non-adiabatic coupling, Born — Oppenheimer — Huang equation 46—47
Sub-Hilbert space, non-adiabatic coupling, construction 67—69
Sub-Hilbert space, non-adiabatic coupling, future research applications 118—119
Ðåêëàìà