Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Rotational couplings, electronic states      284—286
Rotational wave function, permutational symmetry      683—687
Rovibrational states, electron nuclear dynamics (END), molecular systems, final-state analysis      344—349
Rovibronic wave function, permutational symmetry      682—683
Rowland, C.      494(130) 503
Royer, A.      206(107) 276
Rozenbaum, V.M.      42—43(73) 94(73) 104(73) 109(73) 111(73) 116(73) 118(73) 140
Rucker, S.P.      232(265) 280
Ruedenberg, K.      285(48) 301(48) 321 388(189) 410(189) 429 438(33) 487(33 107) 488(107) 500 503 558(5) 576(35) 580—581
Ruggiero, A.J.      211(184) 278
Rydberg states, Renner — Teller effect, tetraatomic molecules      625
Rydberg states, wavepacket revivals      212
Rys, J.      515(15) 553(15) 555
Rys’ polynomials, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation      515—516
Rys’ polynomials, integral equations      553—555
Sabin, J.R.      338(27—29) 339(27) 352
Sack, R.A.      2—3(2) 9(2) 18—20(2) 31(2) 36 41—42(14) 53(14) 106(14) 121(14) 139 145(36) 195
Sadlej, A.      363(97) 427
Sadygov, R.G.      42(68 70) 43(68 70) 97(68 70) 104(68 70) 118(68 70) 140 301(81) 322
Saez Rabonos, V.      162(79—80 86) 196
Sainy, R.D.      458(63) 487(63) 501
Saito, S.      625(139) 633(139) 638(139) 640—641(139) 657
Sakurai, H.      478(88) 502
Salem, L.      436(30) 450(30) 473(82) 480(30) 493(30) 494(30 130—131) 495(82 137) 500 502—504
Salpeter, E.E.      571(24) 580
Samuni, U.      473(83) 475(83) 502
Sanchez-Galvez, A.      360(87) 411—412(87) 426
Sanchez-Mondragon, J.J.      212(198) 278
Sands, M.      95(111) 118(111) 141 435(16) 463(16) 456(16) 500
Santoro, F.      491(119) 503
Saraceno, M.      328(19) 352
Sarka, K.      626(159) 657
Satchler, G.R.      33(48) 38
Sathyamurthy, N.      357(18) 364(18) 424
Sato, S.      692(64—65) 740
Savitt, S.F.      204(102) 212(102) 276
Sawada, S.      358(26 33) 379(26) 399(33) 424
Saxe, P.      234(277) 281 290(66) 321
Sayvetz condition, Renner — Teller effect, triatomic molecules      614—615
Sayvetz, A.      614(68) 655
Scandola, F.      481—482(95) 502
Scappini, F.      625(147) 657
Scattering calculations, direct molecular dynamics, nuclear motion Schroedinger equation      365—373
Scattering calculations, electron nuclear dynamics (END), molecular systems, reactive collisions      338—342
Scattering calculations, electronic states, triatomic quantum reaction dynamics      309—319
Scattering calculations, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, quasi-Jahn — Teller scattering calculation      150—155
Scattering calculations, time shifts      213
Schaefer, B.      625—626(144—145) 627(144) 630(144) 631(145) 638(144) 657
Schaefer, H.F.      609(36) 654
Schaefer-Bung, B.      626(151) 657
Schaeffer, H.F.      506(9) 555
Schatz, G.G.      285(40) 321 326(7) 352 365(112—113) 427
Scherer, F.      211(184) 278
Schiff approximation, electron nuclear dynamics (END), molecular systems      339—342
Schiff, L.I.      215(237) 218(237) 229(237) 279 339—340(36) 352 560(14) 580
Schikarski, T.      434(3) 479(3) 500
Schinke, R.      285(38) 321 366(117—118) 374(131) 427—428
Schlegel, H.      358(43) 359(47—48) 360(75 78 86—87) 372(78) 406(233) 410(86) 411—412(87) 425—426 430 489(115) 503 558(6) 580
Schleich, W.P.      200(16 18) 204(16 90 97) 211(16 90) 273 275
Schleyer, P.v.R.      349(53) 353
Schlier, G      345(46) 353
Schmelzer, A.      381(169) 429
Schmid, W.E.      434(3) 479(3) 500
Schmidt, G      624(126) 656
Schmidt, M.      363(96) 405(229) 426 430 458(59) 501
Schmitzer, H.      206(115—116) 276
Schnider, F.      719(91) 741
Schnieder, L.      167(80 82—87) 196
Schoeller, H.      248(311) 281
Schon, J.      145(43) 195
Schricker, A.      207—208(124) 276
Schroeder, D.V.      203—204(69) 250(69) 275
Schroedinger equation, canonical intersection, historical background      145—148
Schroedinger equation, crude Born — Oppenheimer approximation, basic principles      510—512
Schroedinger equation, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian      514—516
Schroedinger equation, degenerate states chemistry      xi—xiii
Schroedinger equation, diabatization      42
Schroedinger equation, electronic states, adiabatic-to-diabatic transformation      298—300
Schroedinger equation, electronic states, Born — Huang expansion, adiabatic representation      289
Schroedinger equation, Longuet — Higgins phase-change rule, loop construction      462—472
Schroedinger equation, molecular systems, component amplitude analysis, phase-modulus relations      217—218
Schroedinger equation, molecular systems, component amplitude analysis, time-dependent equation      214—215
Schroedinger equation, molecular systems, component amplitude analysis, time-dependent ground state      220—224
Schroedinger equation, molecular systems, Yang — Mills fields, nuclear Lagrangean      250
Schroedinger equation, non-adiabatic coupling, Born — Oppenheimer approximation      187—191
Schroedinger equation, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state molecular system      174—175
Schroedinger equation, non-adiabatic coupling, Jahn — Teller systems, Longuet — Higgins phase      121—122
Schroedinger equation, non-adiabatic coupling, vector potential, Yang — Mills field      94—95
Schroedinger equation, nuclear motion equation, direct molecular dynamics      363—373
Schroedinger equation, nuclear motion equation, electronic states, adiabatic representation      289—290
Schroedinger equation, nuclear motion equation, electronic states, diabatic representation      292—293
Schroedinger equation, nuclear motion equation, principles of      417—420
Schroedinger equation, permutational symmetry, total molecular wave function      661—668 674—678
Schroedinger equation, quantum theory      199
Schroedinger equation, Renner — Teller effect, tetraatomic molecules, vibronic coupling      628—631
Schroedinger equation, Renner — Teller effect, triatomic molecules      587—598
Schroedinger equation, Renner — Teller effect, triatomic molecules, benchmark handling      621—623
Schroedinger equation, Renner — Teller effect, triatomic molecules, Hamiltonian selection      610—615
Schroedinger equation, time-dependent equation, direct molecular dynamics      356—362
Schroedinger equation, time-dependent equation, direct molecular dynamics, Ehrenfest dynamics      395—397
Schroedinger equation, time-dependent equation, direct molecular dynamics, initial conditions      373—377
Schroedinger equation, time-dependent equation, direct molecular dynamics, trajectory surface hopping      399
Schroedinger equation, time-dependent equation, direct molecular dynamics, vibronic coupling, diabatic representation      385—386
Schroedinger equation, time-dependent equation, electron nuclear dynamics (END), structure and properties      325—327
Schroedinger equation, time-dependent equation, electron nuclear dynamics (END), theoretical background      323—325
Schroedinger equation, time-dependent equation, permutational symmetry      723—728
Schroedinger equation, time-dependent equation, wave function propagation      422—423
Schroedinger equation, time-dependent wave function      214
Schroedinger, E.      263(319) 282
Schuetz, M.      363(97) 427
Schulman, L.S.      212(217) 279
Schumacher, E.      145(38) 195 660(9) 738
Schuster, D.I.      493(128) 503
Schuster, R.      200(17) 273
Schwartz, R.L.      571(28) 581
Schwenke, D.W.      82(101—102) 118(101—102) 141 144(29) 195 398(211) 399(213) 403(211 213 224) 430
Scully, M.N.      201(41) 206—207(41) 274 375(140) 428
Scuseria, G.      360(75) 363(95) 426
Seam loci, conical intersections, spin-orbit interaction, $H_2 + OH 1, 2^2A'$ and $1^2A'$ states      571—572
Seam loci, conical intersections, spin-orbit interaction, algorithms      572—574
Seam loci, conical intersections, spin-orbit interaction, convergence      572—573
Seam loci, conical intersections, spin-orbit interaction, invariant parameters      574—576
Seam loci, conical intersections, spin-orbit interaction, orthogonal parameters      576—578
Seam loci, permutational symmetry, ${}^1H_3$ isotopomers      716—717
Sebald, P.      3(17) 20(17) 37 248(310) 281
Second-derivative coupling matrix, crude Born — Oppenheimer approximation, Coulomb potential derivatives      535—542
Second-derivative coupling matrix, direct molecular dynamics, ab initio multiple spawning (AIMS)      412—414
Second-derivative coupling matrix, electronic state adiabatic representation      291—292
Second-derivative coupling matrix, electronic states, adiabatic-to-diabatic transformation, two-state system      304—309
Second-derivative coupling matrix, electronic states, triatomic quantum reaction dynamics, partial wave expansion      313—317
Secrest, D.      611(45) 654
Seekamp-Rahn, K.      167(80 82 86) 196
Segal, G.A.      145(39—40) 195
Seijo, L.      363(97) 427
Self-consistent field (SCF) calculations, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      333—334
Seliger, R.L.      265(325) 282
Selloni, A.      215(238) 218(238) 279 360(70—71) 425
Semiclassical approximation, direct molecular dynamics, non-adiabatic coupling      395—397
Semiclassical approximation, direct molecular dynamics, theoretical background      358—361
Semiclassical approximation, electron nuclear dynamics (END), molecular systems      339—342
Semiclassical approximation, molecular systems      212
Semiclassical approximation, non-adiabatic coupling, Longuet-Higgins phase-based treatment, three-particle reactive system, $D+H_2$ reaction      163—167
Semiempirical wave functions, direct molecular dynamics      414—415
Semiempirical wave functions, permutational symmetry, potential energy surfaces      692—694
Semple, T.C      474(85) 475(85) 502
Senent, M.L.      622(99) 656
Sepulveda, M.A.      358(29) 424
Serrano-Andres, L.      363(97) 427 472(80) 484(99) 502—503
Shafar-Ray, N.E.      145(52) 195
Shafer, N.E.      286(58—59) 321
Shaik, S.S.      436(26—27) 448(26—27) 449(51) 450(26) 500—501
Shapere, M.      204(77—79) 209(78) 250(77—79) 253(79) 270(78) 275
Shapiro, J.H.      206(121) 208(121) 276
Shapiro, M.      200(16 18) 204(16 84—87 90—91 93) 211(16 84—87 90 196) 275 275 278
Shaw, A.      41(46) 140 303(84) 308(84) 522 715—716(81) 740
Shedaded, R.      625(135) 657
Shepard, R.      363(99) 372(126) 406(126) 427
Shepard, S.R.      206(121) 208(121) 276
Shih, S.      455(56) 501 624(115) 656
Shin, C.      118(130) 142
Shin, S.      118(130) 142
Shinke, R.      660(17) 739
Shirkov, D.V.      263(322) 267(322) 282
Shirley, D.A.      625(136) 657
Shtrikman, H.      200(17) 275
Shvartsman, N.      232(266) 280
Siday, R.E.      209(152) 277
Sidis, V.      41(40) 82(40) 139 144(24) 195 202—203(48) 242(48) 274 285(46) 321 719(90) 741
Siegbahn, P.      104(119) 142 160—161(75) 166(75) 196 363(97) 427
Sign flips, non-adiabatic coupling, geometrical interpretation      77—80
Sign flips, non-adiabatic coupling, three-state molecular system      73—77
Sign flips, permutational symmetry, ${}^1H_3$ isotopomers      716—717
Silberberg, Y.      211(181) 278
Silver, D.M.      450(54) 494(54) 501
Simah, D.      285(39) 321
Simon, B.      42(61) 140 209(154) 277
Simon, R.      248(308) 281
Single coordinate model, molecular photochemistry      493—496
Single-surface nuclear dynamics, geometric phase theory      23—31
Single-surface nuclear dynamics, geometric phase theory, molecular Aharonov — Bohm effect, vector-potential theory      25—31
Single-surface nuclear dynamics, geometric phase theory, molecular Aharonov — Bohm effect, vector-potential theory, symmetry properties      28—31
Single-surface nuclear dynamics, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      150—155
Single-surface nuclear dynamics, permutational symmetry, total molecular wave function      665—668
Single-valued adiabatic state, geometric phase theory, evolution of      12—17
Single-valued adiabatic state, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix      126—132
Single-valued diabatic potentials, non-adiabatic coupling, two-state molecular system and isotopic analogues, $C_2H$-molecule: (1, 2) and (2, 3) conical intersections      111—112
Single-valued potential, adiabatic-to-diabatic transformation matrix, non-adiabatic coupling      49—50
Single-valued potential, adiabatic-to-diabatic transformation matrix, non-adiabatic coupling, topological matrix      50—53
Singlet state molecules, triatomic molecules, vibronic coupling, Renner — Teller effect      598—600
Sjoequist, E.      248(313) 282
Skagerstam, B.-S.      328(21) 552
Skew symmetric matrix, electronic states, adiabatic representation      290—291
Skew symmetric matrix, electronic states, adiabatic-to-diabatic transformation, two-state system      302—309
Skodje, R.      378(148) 428
Slater determinants, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation      542—550
Slater determinants, electron nuclear dynamics (END), molecular systems, final-state analysis      342—349
Slater, J.      550(14) 555
Slater, L.      484(99) 503
Sloane, R.      376(143) 428
Smirnov, B.M.      144(13) 194
Smith, B.      358(43) 359(50 64) 360(79—85) 406(64) 407(79) 408(80—82) 409(83—84) 425—426
Smith, F.      384(181) 429
Smith, F.T.      41(33) 56(33) 106(123) 139 142 203(71) 275 284(10) 301(10) 320 661(31) 739
Smith, S.C      660(27) 699(27) 739
Sobolewski, A.L.      381(173) 393(173) 429 479—480(92) 502 506(1) 555
Sodium iodide, direct molecular dynamics, ab initio multiple spawning      413—414
Soep, B.      434(5) 500
Space-fixed coordinates, permutational symmetry, electronic wave function      680—682
Space-fixed coordinates, permutational symmetry, group theoretical properties      669—674
Space-fixed coordinates, permutational symmetry, total molecular wave function      661—668 674—678
Space-inversion operator, permutational symmetry      722—723
Spiegelman, F.      385(185) 429
Spielfiedel, A.      622(92) 656
Spin function, permutational symmetry, group theoretical properties      669—674
Spin multiplicity, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      706—711
Spin-degenerate systems, geometric phase theory, conical intersections      6—8
Spin-orbit coupling, conical intersections, derivative couplings      569—570
Spin-orbit coupling, conical intersections, electronic Hamiltonian      559
Spin-orbit coupling, conical intersections, future research issues      578—580
Spin-orbit coupling, conical intersections, local topography, conical parameters      569
Spin-orbit coupling, conical intersections, local topography, energy parameters      568—569
Spin-orbit coupling, conical intersections, location      564—565
Spin-orbit coupling, conical intersections, numerical calculations      571—578
Spin-orbit coupling, conical intersections, numerical calculations, $H_2+OH 1, 2^2$ and $1^2A'$ states      571—572
Spin-orbit coupling, conical intersections, numerical calculations, convergence equations      572
Spin-orbit coupling, conical intersections, numerical calculations, orthogonality properties      576—578
Spin-orbit coupling, conical intersections, numerical calculations, seam loci, conical parameters and invariant      574—576
Spin-orbit coupling, conical intersections, numerical calculations, seam loci, parameters      572—574
Spin-orbit coupling, conical intersections, orthogonal intersection adapted coordinates      565—567
Spin-orbit coupling, conical intersections, perturbation theory      561—564
Spin-orbit coupling, conical intersections, research background      558—559
Spin-orbit coupling, conical intersections, time-reversal symmetry      559—561 563—564
Spin-orbit coupling, conical intersections, transformational invariant      567
Spin-orbit coupling, geometric phase theory, Jahn — Teller effect      20—22
Spin-orbit coupling, permutational symmetry      711—712
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states, ABBA molecules      631—633
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states, HCCS radical      633—640
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states, perturbative handling      641—646
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, delta electronic states, perturbative handling      647—653
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, theoretical principles      625—633
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, theoretical principles, Hamiltonian equation      626—628
Spin-orbit coupling, Renner — Teller effect, tetraatomic molecules, theoretical principles, vibronic problem      628—631
Spin-orbit coupling, Renner — Teller effect, theoretical principles      585—586
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, benchmark handling      621—623
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, effective Hamiltonians      623—624
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, Hamiltonian equations      610—615
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, minimal models      615—618
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, multi-state effects      624
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, pragmatic models      618—621
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, spectroscopic properties      598—610
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, spectroscopic properties, nonlinear molecules      606—610
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, theoretical principles      587—598
Spin-orbit coupling, Renner — Teller effect, triatomic molecules, vibronic coupling and      600—605
Spin-pairing, conical intersection location      492—493
Spin-pairing, conical intersection, anchors, molecules and independent quantum species      439—441
Spin-pairing, conical intersection, two-state systems      437—438
Spin-pairing, phase-change rule, cyclopentadienyl radical (CPDR)      467
Spinor components, molecular systems, modulus-phase formalism, applications      272
Spinor components, molecular systems, modulus-phase formalism, Dirac theory electrons      267—268
Spitznagel, G.W.      349(53) 555
Splitting phenomena, Renner — Teller effect, triatomic molecules, vibronic/spin-orbit coupling      603—605
Sprandel, L.L.      612(52) 655
Springer, M.      145(52) 195
Squillacote, M.      474(85) 475(85) 502
Srinivasan, R.      458(60) 487(60) 501
Staemmler, V.      609(36) 654
Stampfuss, P.      491(121) 503
Stanton, J.F.      326(10) 552
State-averaged orbitals, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      4—5—411
State-to-state transition probability, non-adiabatic coupling, extended Born — Oppenheimer equations      175—177
State-to-state transition probability, non-adiabatic coupling, Longuet — Higgins phase-based treatment      155—157
Steckler, R.      358(44) 425
Stedman, g.e.      200(13) 210(13) 222(13) 275
Stefanov, B.B.      363(95) 426
Steiner, M.      199(6) 275
Stengle, M.      385(187) 429
Stenholm, S.      207(131) 276
Stern, A.      215(241) 218(241) 280
Steven, M.L.      144(29) 195
Stevens, R.M.      144(11) 194 728(94) 741
Stillinger      403(223) 430
Stock, G.      41(42) 82(42) 139 356(1) 374(136) 381(174) 382(1) 384(1) 386(1) 393(174) 395(1) 404(227—228) 423 428—430 491(118) 503
Stokes theorem, geometric phase theory, eigenvector evolution      14—17
Stolow, A.      212(200) 278
Stone, A.J.      10(24) 18(24) 20(24) 57 41(6) 138 209(159) 233(159) 277 442(35) 501
Stone, J.M.R.      614(61) 655
Stone, M.      17(28) 57
Strain, M.C.      363(95) 426
Stratman, R.E.      363(95) 426
Strey, G.      611(43) 654
Stroud, C.R.      200(25) 204(96) 211(25 96 197) 275 275 278
Stuckelberg, E.C.G.      284(6) 320 397(210) 430
Stueckelberg oscillations, direct molecular dynamics, trajectory surface hopping      398—399
Stumpf, M.      660(17) 739
Su, S.      363(96) 426
Sub-Hilbert space, electronic state adiabatic representation, Born — Huang expansion      287—289
Sub-Hilbert space, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework      55—56
Sub-Hilbert space, non-adiabatic coupling, Born — Oppenheimer — Huang equation      46—47
Sub-Hilbert space, non-adiabatic coupling, construction      67—69
Sub-Hilbert space, non-adiabatic coupling, future research applications      118—119
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå