Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Àâòîðû: Michael Baer, Gert D.Billing
Àííîòàöèÿ: Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.
This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.
Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 824
Äîáàâëåíà â êàòàëîã: 05.08.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Jolicard, G. 364(105) 427
Jones, G. 376(144) 399(214) 414(144 214) 428 430
Jordan, M. 361(92—93) 426
Jorgensen, A.D. 162(78) 196
Jorgensen, F. 584(3) 586(3 12) 591(12) 617—618(12) 624(3 110) 641(12) 653 656
Jorgensen, P. 372(124—125) 406(124—125) 427
Jortner, J. 204(99) 276
Joshi, A. 206(120) 208(120) 276
Judd, B.R. 33(49) 38
Judson, R.S. 286(58) 321
Jungen — Merer (JM) pragmatic model, Renner — Teller effect, triatomic molecules 619—621
Jungen — Merer (JM) pragmatic model, Renner — Teller effect, triatomic molecules, benchmark handling 621—623
Jungen, C. 584—586(8) 598(24—27) 606(25) 607(25) 608(8 24) 619(24 80 84—85) 620(26—27) 621(26) 641(8) 653—655
Jungen, M. 609(36) 654
Kaempffer, F.A. 213(234) 279
Kaise, M. 624(109) 656
Kaledin, A.L. 579(36—37) 581
Kalyanaraman, C 357(18) 364(18) 424
Kaprinidis, N.A. 493(128) 503
Karadakov, P.B. 448(50) 501
Karlstroem, G. 363(97) 427
Karplus, M. 144(11) 194 359(59) 360(66—67) 371(66—67) 379(149) 425 428 728(94) 741
Karrlein, W. 364(105) 427
Kasahara, S. 248(310) 281
Katayanagi, H. 82(103) 118(103) 141
Kato, T. 223(251) 280
Kaufherr, T. 232(264) 280
Kay, K.G. 212(205) 218(205) 278 380(153—156) 428
Kazes, E. 213(233) 279
Keith, T. 363(95) 426
Kekule structure, conical intersections, two-state chemical reactions 436—438
Kekule structure, phase-change rule, permutational mechanism 451—453
Keller, H.-M. 660(17) 739
Kendrick, B. 25(33) 28(38) 29(40) 31(40) 37 660(14 18) 668(45 52) 720(92) 739—741
Kendrick, B.K. 285(51) 286(69) 301(51) 321
Kerman, K. 204(98) 276
Kern, C.W. 571(25) 580 612(52) 655
Kerr, C.M.L. 624(109) 656
Khalfin, L.A. 201(39) 209(39) 215(39) 274
Khalil, M. 204(89) 208(89) 211(89) 275
Khersonskii, V.K. 661(36) 739
Kielanowski, P. 213(221) 279
Kimball, G.E. 499(140) 504
Kimble, H.J. 248(308) 281
Kinetic energy operator (KEO), crude Born — Oppenheimer approximation, basic principles 507—512
Kinetic energy operator (KEO), direct molecular dynamics, theoretical background 360—361
Kinetic energy operator (KEO), direct molecular dynamics, trajectory “swarms” 420—422
Kinetic energy operator (KEO), direct molecular dynamics, vibronic coupling Hamiltonian 390—393
Kinetic energy operator (KEO), electronic states, adiabatic representation, Born — Huang expansion 287—289
Kinetic energy operator (KEO), electronic states, triatomic quantum reaction dynamics 311—312
Kinetic energy operator (KEO), non-adiabatic coupling, Born — Oppenheimer approximation 187—191
Kinetic energy operator (KEO), non-adiabatic coupling, historical background 145—148
Kinetic energy operator (KEO), non-adiabatic coupling, Longuet — Higgins phase-based treatment, semiclassical calculation, reaction 164—167
Kinetic energy operator (KEO), non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system 158—168
Kinetic energy operator (KEO), non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system 149—157
Kinetic energy operator (KEO), nuclear motion Schroedinger equation 418—420
Kinetic energy operator (KEO), Renner — Teller effect, tetraatomic molecules, electronic states 638—640
Kinetic energy operator (KEO), Renner — Teller effect, tetraatomic molecules, vibronic coupling 628—631
Kinetic energy operator (KEO), Renner — Teller effect, triatomic molecules 594—598
Kinetic energy operator (KEO), Renner — Teller effect, triatomic molecules, Hamiltonian equations 612—615
Kinetic energy operator (KEO), Renner — Teller effect, triatomic molecules, pragmatic models 620—621
King, H.F. 515(15—16) 553(15—16) 555
Kiselev, A.A. 625(132) 632(132) 634(132) 641(132) 646(132) 657 661(37) 739
Kitchen, D.C 234(280) 281
Klapwijk, T.M. 248(309) 281
Klauder, J.R. 328(21) 352
Klein, J. 230—232(261) 280
Klein, S. 206(115—116) 276 360(84—85) 409(84) 410(85) 426
Klessinger, M. 357(4 8) 381(4 8) 424 434(2 8) 473(2) 479(92) 480(2 92) 492(124) 494—495(2) 500 502—503
Kliner, D.A. 145(49—50) 195 286(56—59) 321
Kloster-Jensen, E. 381(169) 429
Kluk, E. 212(203) 278 358(25) 380(25) 424
Klyshko, D.N. 206(112) 276
Knowles, P.J. 41(6) 138 363(98) 427 621(88) 622(88 91 101) 655—656
Koeppel, H. 41(37—39 41 43) 47(41) 82(106) 134(39) 139 141 144(25—26 30) 145(43) 195 202(49 52) 203(49) 233(52) 242(49 296—297 317) 274 281 285(42 44—45 53) 301(44—45 53) 321 326(14) 352 360(65) 381(161 170) 382(65) 383(179) 384(65) 385(179) 386(188) 389(65) 391(65) 393(170 191—194) 419(179) 425 428—429 488(111) 491(111 121) 503 586(13—14) 591(13) 598(13—14) 624(13—14 114) 653 656 660(3) 738
Kohen, D. 357(21) 403(223) 424 430
Kohler, B. 210(166) 277 381(175) 429
Kohler, D. 207(127) 276
Koizumi, H. 22(31) 33(45) 37—38 202(54) 233(54 275) 239(54) 274 280
Kolbuszewski, M. 623(104) 656
Komaromi, I. 363(95) 426
Kompa, K.-L 211(182—183) 278
Kopp, A. 624(107) 656
Kopp, I. 625(133) 657
Korterik, J.P. 206(122) 276
Koseki, S. 363(96) 426
Kosloff, D. 364(102) 427
Kosloff, R. 28(39) 37 41(23) 86(23) 122(23) 139 146(58) 150(58) 157(58) 195 229(258) 242(300) 248(300) 280—281 357(15 17) 364(15 102 104—105) 424 427
Kosmas, A. 162(78) 196
Koszykowski, M. 374(134) 428
Kouri, D.J. 284(16) 285(58) 320—321 365(115) 427
Koutecky, J. 473(82) 495(82) 502
Kraemer, W.P. 623(102—105) 656
Kramer, P. 328(19) 352
Kramers doublets, geometric phase theory, linear Jahn — Teller effect 20—22
Kramers doublets, geometric phase theory, spin-orbit coupling 20—22
Kramers — Kronig reciprocity, wave function analycity 201—205
Kramers, H. 560(16) 580
Kramers’ theorem, conical intersections, spin-orbit interaction 561
Kramers’ theorem, degenerate states chemistry xiii
Kramers’ theorem, geometric phase theory, conical intersections 6—8
Kramers’ theorem, permutational symmetry 712
Kramers’ theorem, permutational symmetry, group theoretical properties 669—674
Kramers’ theorem, permutational symmetry, rotational wave function 684—687
Krempl, S. 506(4) 555
Krishna, M. 399(216) 430
Krishnamachari, S.L.N.G. 633(161—162) 657
Krishnan, R. 41(5) 138
Krmar, M. 590(2829) 599—600(28—29) 602(28—29) 604(28) 606(34) 646(173) 654 658
Kronecker delta, molecular systems, Yang — Mills fields, nuclear Lagrangean 249—250
Kronig, R.de L. 284(12) 320
Kudin, K.N. 363(95) 426
Kuipers, L. 206(122) 276
Kulander, K.C 374(132) 428
Kumar, A. 458(63) 487(63) 501
Kung, A.H. 458(61—62) 460(61—62) 487(61—62) 501
Kuntz, P. 397(199) 399(199) 429
Kuppermann, A. 41(4 29 45—46) 106(29 121—122) 138—140 142 145(44—46) 150(44—46) 164(44—46) 167(46) 195 211(195) 242(288—289) 248(195) 278 281 285(26 33—37 55) 286—289(26) 290(26 33) 291(26) 300(55) 301(26 55) 302(83) 303 304(55) 308(84) 310(26 33—37 85—86) 314(26) 315—317(33) 318(33 91—92) 319(26 33) 320—322 365(113) 427 487—488(103) 503 668(48—50) 713(81) 716(81 83—84) 739—740
Kurasaki, Y. 118(128) 119(131) 142
Kutzelnigg, W. 506(11) 555
Lafarge, P. 248(314) 282
Lagrangian density, electron nuclear dynamics (END), time-dependent variational principle (TDVP) 327—328
Lagrangian density, electron nuclear dynamics (END), time-dependent variational principle (TDVP), basic ansatz 330—333
Lagrangian density, molecular systems, modulus-phase formalism, correction term 269—270
Lagrangian density, molecular systems, modulus-phase formalism, Dirac electrons 266—268
Lagrangian density, molecular systems, modulus-phase formalism, Dirac electrons, topological phase 270—272
Lagrangian density, molecular systems, modulus-phase formalism, nearly nonrelativistic limit 268—269
Lagrangian density, molecular systems, modulus-phase formalism, nonrelativistic electron 263—265
Lagrangian density, molecular systems, modulus-phase formalism, nonrelativistic/relativistic cases 262—263
Lagrangian density, molecular systems, modulus-phase formalism, potential fluid dynamics and quantum mechanics 265—266
Lagrangian density, molecular systems, modulus-phase formalism, spinor phases 272
Lagrangian density, molecular systems, Yang — Mills fields 249—250 255—257
Lagrangian multiplier, conical intersection location 488—489 565
Laguerre polynomials, Renner — Teller effect, triatomic molecules 589—598
Lai, E.K.C 612(53) 655
Laidler, K.J. 443(36) 501
Lamb, W.E. 205(105) 276
Lami, A. 403(226) 430 491(120) 503
Lanczos reduction, direct molecular dynamics, nuclear motion Schroedinger equation 364—373
Lanczos reduction, non-adiabatic coupling, Longuet — Higgins phase-based treatment, semiclassical calculation, reaction 164—167
Lanczos reduction, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation 152—155
Landau — Zener model, direct molecular dynamics, dependency properties 415—416
Landau — Zener model, direct molecular dynamics, trajectory surface hopping 397—399
Landau — Zener model, non-adiabatic coupling, sub/sub-sub-Hilbert construction 67—70
Landau — Zener model, non-adiabatic coupling, topological spin insertion 70—73
Landau, L.D. 67(87 89) 72(87) 141 284(5) 320 397(208) 430
Landauer, R. 213(229) 279
Landsberg, B.M. 614—615(63) 620(63) 626(160) 655 657
Langhoff, S.R. 571(25) 580
Laplace transform, electronic state adiabatic representation, Born — Huang expansion 286—289
Laplace transform, permutational symmetry, total molecular wave function 664—668
Larsson, S. 349(58) 353
Lassier-Govers, B. 719(90) 741
Last, I. 82(97) 106(120) 118(97) 141—142
Laudman, U. 360(69) 425
Launay, J.M. 316—317(90) 322
Lawande, Q.V. 206(120) 208(120) 276
Lawande, S.V. 206(120) 208(120) 276
Le Floch, A. 213(230) 279
Le Sech, G 284(18—19) 320
Lebowitz, J.L. 212(215) 279
LeBreton, P.R. 144(7) 194
LeDourneuf, M. 316—317(90) 322
Lee, E.P.F. 467(77) 469—470(77) 502
Lee, S.-Y. 358(24) 377—378(24) 380(24) 424
Lee, Y.T. 144(6—7) 194 458(61—62) 460(61—62) 487(61—62) 501 625(136) 657
Leforestier, G: 360(68) 364(105) 371(68) 425 427 473(82) 495(82) 502
Legendre polynomials, permutational symmetry, degenerate/near-degenerate vibrational levels 732—733
Legendre polynomials, Renner — Teller effect, triatomic molecules, benchmark handling 622—623
Legendre wave function, non-adiabatic coupling, semiclassical calculation, reaction 164—167
Leichtle, G 200(16 18) 204(16 90) 211(16 90) 273 275
Leighton, R.B. 95(111) 118(111) 141 435(16) 463(16) 456(16) 500
Lem, G. 493(128) 503
Lemmer, R.H. 204(98) 276
Lendvay, G. 326(7) 352
Lengsfield, B.H. 234(277) 281 285(43) 290(43 65—67) 297(43) 321 405—406(232) 430 572(31) 581
Lepetit, B. 41(45) 106(121) 140 142 145(44) 150(44) 164(44) 195 241(288) 281 285(33) 290(33) 310(33) 315—319(33) 320 668(48) 739
Lester, M.I. 571(28) 581
Levenson, J.A. 207(126) 276
Levich, B.G. 671(55) 673(55) 740
Levin, G. 435(23) 474(23) 500
Levine, I.N. 674—675(56) 679—680(56) 740
Levine, R.D. 118(127) 142 212(211) 248(211) 279 358(35—36) 399(35—36) 401(36) 402(35—36) 411(36 245—246) 424 431
Lewis, G.N. 435(14) 474(14) 500
Li, B. 224(253) 280
Liao, C-L. 82(96) 118(96) 141
Liashenko, A. 363(95) 426
Lichten, W. 41(32) 139 284(8) 320 384(180) 429
Lie groups, molecular systems, Yang — Mills fields, nuclear Lagrangean 250
Lie groups, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields 250—252
Liebling, G.R. 464(74) 502
Liehr, A.D. 2(1) 36 696(73) 733(73) 740
Lifshitz, E.M. 67(87) 72(87) 141
Light, J.C. 363(100—101) 427
Lill, J.V. 363(100) 427
Lin, J.J. 211(186) 248(186) 278 624(128) 657
Lin, S.H. 42—43(72—74) 71(74) 94(73—74) 97(72) 104(72—74) 109(73) 111(72—73) 116(73) 117(74) 118(72—74) 122(133—134) 140 142 147(65—66) 148(65) 196 202(55—56) 211(193—194) 234(193 281—282) 242(56 282) 248(193—194) 274 278 282 488(113) 503 506(2—3) 555
Lindh, R. 41(6) 138 363(97) 427 472(80) 502
Line integral techniques, adiabatic-to-diabatic transformation matrix 50—57
Line integral techniques, adiabatic-to-diabatic transformation matrix, quasidiabatic framework 53—57
Line integral techniques, adiabatic-to-diabatic transformation matrix, single-valued diabatic potentials and topological matrix 50—53
Line integral techniques, non-adiabatic coupling, three-state molecular system, sign flip derivation 73—77
Line integral techniques, non-adiabatic coupling, two-state molecular system and isotopic analogues 108—109
Line integral techniques, non-adiabatic coupling, two-state molecular system and isotopic analogues, -molecule: (1, 2) and (2, 3) conical intersections 111—112
Linear combinations of atomic orbitals (LCAO), direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems 4—5—411
Linear coupling approximation, geometric phase theory 3
Linear coupling approximation, geometric phase theory, Jahn — Teller effect 18—20
Linear triatomic molecules, Renner — Teller effect, singlet state vibronic coupling 598—600
Linear triatomic molecules, Renner — Teller effect, vibronic/spin-orbit coupling 600—605
Lipkin, N. 364(105) 427
Lithium compounds, direct molecular dynamics, ab initio multiple spawning 413—414
Lithium compounds, permutational symmetry, systems, isotopomers 713—717
Lithium compounds, permutational symmetry, systems, alkali metal trimers 712—713
Lithium compounds, permutational symmetry, systems, dynamic Jahn — Teller and geometric phase effects 698—711
Lithium compounds, permutational symmetry, systems, electron/nuclear spin effects 711—712
Lithium compounds, permutational symmetry, systems, nonadiabatic coupling effects 711
Lithium compounds, permutational symmetry, systems, potential energy surfaces 692—694
Lithium compounds, permutational symmetry, systems, static Jahn — Teller effect 694—698
Lithium compounds, permutational symmetry, adiabatic states, conical intersections, invariant operators 735—737
Lithium compounds, permutational symmetry, adiabatic states, conical intersections, Jahn — Teller theorem 733—735
Lithium compounds, permutational symmetry, antilinear operator properties 721—723
Lithium compounds, permutational symmetry, degenerate states chemistry xiii
Lithium compounds, permutational symmetry, degenerate/near-degenerate vibration levels 728—733
Lithium compounds, permutational symmetry, electronic wave function 680—682
Lithium compounds, permutational symmetry, energy functional form 737—738
Lithium compounds, permutational symmetry, GBO approximation and geometric phase, two-dimensional Hilbert space model 718—721
Lithium compounds, permutational symmetry, geometric phase theory, single-surface nuclear dynamics 30—31
Lithium compounds, permutational symmetry, group theoretical issues 668—674
Lithium compounds, permutational symmetry, nuclear spin function 678—680
Lithium compounds, permutational symmetry, phase-change rule 451—453
Lithium compounds, permutational symmetry, rotational wave function 683—687
Lithium compounds, permutational symmetry, rovibronic/vibronic wave functions 682—683
Lithium compounds, permutational symmetry, theoretical background 660—661
Lithium compounds, permutational symmetry, time-dependent Schroedinger equation 723—728
Lithium compounds, permutational symmetry, total molecular wave function 661—668 674—678
Lithium compounds, permutational symmetry, vibrational wave function 687—692
Littlejohn, R. 358(27) 424
Liu, B. 160—161(75) 166(75) 196
Liu, D.-J. 458(61—62) 460(61—62) 487(61—62) 501
Liu, G 249(315) 282
Liu, G. 363(95) 426
Liu, J. 224(253) 280
Liu, S. 104(119) 142
Liu, Y.-P. 403(224) 430
Liu, Y.M. 233(276) 280
Local harmonic approximation (LHA), direct molecular dynamics, Gaussian wavepacket propagation 378—381
Local hyperspherical surface functions (LHSFs), electronic states, triatomic quantum reaction dynamics, partial wave expansion 315—317
Localized molecular orbital/generalized valence bond (LMO/GVB) method, direct molecular dynamics, ab initio multiple spawning (AIMS) 413—414
Lochbrunner, S. 434(3) 479(3) 500
Loidl, R. 210(170) 278
Lombardi, J.R. 618(75) 655
London, F. 207(135) 277 692(62) 740
Longo, R. 325(3—4) 333(4) 349(4) 352
Longuet — Higgins phase-change rule, conical intersections, chemical reaction 446—453
Longuet — Higgins phase-change rule, conical intersections, chemical reaction, pericyclic reactions 447—450
Longuet — Higgins phase-change rule, conical intersections, chemical reaction, pi-bond reactions 452—453
Longuet — Higgins phase-change rule, conical intersections, chemical reaction, sigma bond reactions 452
Longuet — Higgins phase-change rule, conical intersections, comparison with other techniques 487— 493
Longuet — Higgins phase-change rule, conical intersections, loop construction 441—446
Longuet — Higgins phase-change rule, dynamic phase properties 210
Longuet — Higgins phase-change rule, loop construction, cyclopentadienyl cation (CPDC) 467—472
Longuet — Higgins phase-change rule, loop construction, cyclopentadienyl radical (CPDR) 464—467
Longuet — Higgins phase-change rule, loop construction, Jahn — Teller theorem 461—472
Longuet — Higgins phase-change rule, non-adiabatic coupling 148—168
Longuet — Higgins phase-change rule, non-adiabatic coupling, geometric phase effect, two-dimensional two-surface system 148—157
Longuet — Higgins phase-change rule, non-adiabatic coupling, geometric phase effect, two-dimensional two-surface system, quasi-Jahn — Teller model, scattering calculation 150—155
Longuet — Higgins phase-change rule, non-adiabatic coupling, historical background 145—148
Longuet — Higgins phase-change rule, non-adiabatic coupling, Jahn — Teller systems 119—122
Longuet — Higgins phase-change rule, non-adiabatic coupling, theoretical background 42—44
Longuet — Higgins phase-change rule, non-adiabatic coupling, three-particle reactive system 157—168
Longuet — Higgins phase-change rule, non-adiabatic coupling, three-particle reactive system, reaction, quasiclassical trajectory (QCT) calculation 160—163
Longuet — Higgins phase-change rule, non-adiabatic coupling, three-particle reactive system, reaction, semiclassical calculation 163—167
Longuet — Higgins phase-change rule, non-adiabatic coupling, three-particle reactive system, reaction, quasiclassical trajectory calculation 167—168
Longuet — Higgins phase-change rule, permutational symmetry, isotopomers 717
Longuet — Higgins phase-change rule, theoretical background 434—435
Longuet-Higgins, H.G. 2(2 6—7) 3(2) 5(6—7) 9(2) 10—11(7) 18—20(2) 31(2 6—7) 36—37 41(14—17) 42(14—15) 53(14—17) 58(16) 59(15) 68(15—17) 106(14—17) 116(16—17) 121(14—17) 124(17) 139 144(1) 145(1 36—37) 146(1) 149(37) 194—195 209—210(158) 233(158 274) 240(274) 277 280 284(20—22) 320 357(10) 408(238) 424 430 434(12—13) 441(12) 442(13) 443(12) 448(13) 450(53) 461(12—13) 463(12—13) 474(12—13) 494(53) 500 615—616(69) 629(69) 633(69) 655 667(42—44) 698(42—44) 719(42) 739
Loomis, R.A. 571(28) 581
Loop construction, conical intersections, photochemical systems 453—460
Loop construction, conical intersections, photochemical systems, four-electron systems 455—458
Loop construction, conical intersections, photochemical systems, larger four-electron systems 458—459
Loop construction, conical intersections, photochemical systems, multielectron systems 459—460
Loop construction, conical intersections, photochemical systems, three-electron systems 455
Loop construction, phase-change rule and 441—446
Loop construction, phase-change rule and, coordinate properties 443—446
Loop construction, qualitative molecular photochemistry 472—482
Loop construction, qualitative molecular photochemistry, ammonia 480—481
Loop construction, qualitative molecular photochemistry, benzene derivatives 479—480
Loop construction, qualitative molecular photochemistry, butadiene 474—479
Loop construction, qualitative molecular photochemistry, cyclooctatetraene (COT) 482
Loop construction, qualitative molecular photochemistry, cyclooctene isomerization 473—474
Loop construction, qualitative molecular photochemistry, ethylene 472—473
Loop construction, qualitative molecular photochemistry, inorganic complexes 481—482
Loop construction, theoretical background 434—435
Lorquet, J.G. 41(51) 140 242(295) 281 290(64) 321
Loss, D. 248(311) 281
Loudon, R. 207(133) 277
Louisell, W.H. 207(136) 277
LSTH potential energy parameters, non-adiabatic coupling, quasiclassical trajectory (QCT) calculation, reaction 167—168
LSTH potential energy parameters, non-adiabatic coupling, quasiclassical trajectory (QCT) calculation, three-particle reactive system, reaction 160—163
LSTH potential energy parameters, semiclassical calculation, reaction 166—167
Ðåêëàìà