Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Sub-Hilbert space, non-adiabatic coupling, minimal diabatic potential matrix      81—89
Sub-Hilbert space, non-adiabatic coupling, theoretical background      42—44
Sub-Hilbert space, non-adiabatic coupling, three-state molecular system, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      113—117
Sub-Hilbert space, non-adiabatic coupling, two-state molecular system      59
Sub-Hilbert space, non-adiabatic coupling, vector potential      93—97
Sub-sub-Hilbert space, non-adiabatic coupling, construction      69—70
Sub-sub-Hilbert space, non-adiabatic coupling, topological spin      70—73
Sudarshan, E.C.G.      248(308) 281
Sufficiency criterion, molecular systems, Yang — Mills fields, tensorial field vanishing      257—259
Sugihara, M.      411(242) 430
Sukumar, N.      406(235) 430
Sumpter, B.      371(122) 427
Surface hopping, direct molecular dynamics      397—399
Surface hopping, direct molecular dynamics, error sources      403—404
Surface hopping, direct molecular dynamics, limits of      416—417
Susskind, L.      208(137 145) 212(218) 277 279
Sutcliffe, B.T.      498—499(139) 504 611(44) 612(49) 622(49 89—90) 654—656
Suter, D.      3(13) 57 248(307) 281
Suter, H.U.      366(118) 427
Sutin, N.      349(57) 555
Suzuki, T.      82(103) 118(103) 141
Swinney, T.      381(174) 393(174) 429
Symmetric properties, conical intersection, location      490—491
Symmetric properties, conical intersection, spin-orbit interaction, $H_2+OH 1, 2^2A'$ and $1^2A'$ states      571—572
Symmetric properties, crude Born — Oppenheimer approximation, hydrogen molecule, minimum basis set calculation      543—550
Symmetric properties, direct molecular dynamics, conical intersections      388—389
Symmetric properties, direct molecular dynamics, vibronic coupling Hamiltonian      390—393
Symmetric properties, electron nuclear dynamics (END), molecular systems, final-state analysis      347—349
Symmetric properties, electronic states, triatomic quantum reaction dynamics, hyperspherical coordinates      310—312
Symmetric properties, geometric phase theory, conical intersections      6—8
Symmetric properties, geometric phase theory, single-surface nuclear dynamics, vector-potential, molecular Aharonovo — Bohm effect      28—31
Symmetric properties, permutational symmetry, ${}^2S$ systems, ${}^1H_3$ isotopomers      713—717
Symmetric properties, permutational symmetry, ${}^2S$ systems, alkali metal trimers      712—713
Symmetric properties, permutational symmetry, ${}^2S$ systems, dynamic Jahn — Teller and geometric phase effects      698—711
Symmetric properties, permutational symmetry, ${}^2S$ systems, electron/nuclear spin effects      711—712
Symmetric properties, permutational symmetry, ${}^2S$ systems, nonadiabatic coupling effects      711
Symmetric properties, permutational symmetry, ${}^2S$ systems, potential energy surfaces      692—694
Symmetric properties, permutational symmetry, ${}^2S$ systems, static Jahn — Teller effect      694—698
Symmetric properties, permutational symmetry, adiabatic states, conical intersections, invariant operators      735—737
Symmetric properties, permutational symmetry, adiabatic states, conical intersections, Jahn — Teller theorem      733—735
Symmetric properties, permutational symmetry, antilinear operator properties      721—723
Symmetric properties, permutational symmetry, degenerate/near-degenerate vibration levels      728—733
Symmetric properties, permutational symmetry, electronic wave function      680—682
Symmetric properties, permutational symmetry, energy functional form      737—738
Symmetric properties, permutational symmetry, GBO approximation and geometric phase, two-dimensional Hilbert space model      718—721
Symmetric properties, permutational symmetry, group theoretical issues      668—674
Symmetric properties, permutational symmetry, nuclear spin function      678—682
Symmetric properties, permutational symmetry, rotational wave function      683—687
Symmetric properties, permutational symmetry, rovibronic/vibronic wave functions      682—683
Symmetric properties, permutational symmetry, theoretical background      660—661
Symmetric properties, permutational symmetry, time-dependent Schroedinger equation      723—728
Symmetric properties, permutational symmetry, total molecular wave function      661—668 674—678
Symmetric properties, permutational symmetry, vibrational wave function      687—692
Symmetric properties, Renner — Teller effect, pragmatic triatomic models      618—621
Szalay, P.G.      634(165 167) 658
Takahashi, M.      625(134) 657
Takamuku, S.      478(88) 502
Takayanki, T.      118(128) 119(31) 142
Talmi, I.      209(153) 265(327) 277 282
Tang, J.      625(139) 633(139) 638(139) 640—641(139) 657
Tannor, D.J.      211(185) 278
Tarroni, R.      624(130) 657
Tassie, L.J.      209(153) 277
Tawa, G.J.      82(101) 118(101) 141
Taylor series, direct molecular dynamics, vibronic coupling, conical intersections      386—389
Taylor series, geometric phase theory, conical intersections      5—8
Taylor series, Renner — Teller effect, triatomic molecules      610—615
Taylor, H.      325(2) 351
Taylor, H.S.      660(16) 739
Taylor, P.R.      41(6) 138
Taylor, T.R.      626(151) 657
Teller, E.      2(4) 5(4 20) 6—7(4) 31(4) 37 41(18—20) 68(18—20) 116(18—20) 139 144—145(2—4) 194 233(267) 280 357(9 11) 381(164) 424 428 434(1) 461(69) 479(1) 500 502 584(4) 653 696(72) 740
Temperature, wave function properties      214
Tennyson, J.      41(30) 121(30) 139 611(44) 654 698(74) 716(74) 740
Terhal, B.      249(317) 282
Tetraatomic molecules, electronic states, quantum reaction dynamics      285—286
Tetraatomic molecules, Renner — Teller effects, $\Pi$ electronic states, ABBA molecules      631—633
Tetraatomic molecules, Renner — Teller effects, $\Pi$ electronic states, HCCS radical      633—640
Tetraatomic molecules, Renner — Teller effects, $\Pi$ electronic states, perturbative handling      641—646
Tetraatomic molecules, Renner — Teller effects, delta electronic states, perturbative handling      647—653
Tetraatomic molecules, Renner — Teller effects, theoretical principles      625—633
Tetraatomic molecules, Renner — Teller effects, theoretical principles, Hamiltonian equation      626—628
Tetraatomic molecules, Renner — Teller effects, theoretical principles, vibronic problem      628—631
Teutolsky, S.A.      330(22) 352
Thacker, w.d.      206(117) 210(117) 276
Thaddeus, P.      633—634(164) 658
Theilhaber, J.      326(15) 352
Thiel, A.      41(43) 139 249(317) 282 285(53) 301(53) 321
Thompson, K.      361(92—93) 426
Thompson, T.C.      145(41) 195 242—243(302) 246—247(302) 281 660(13 20) 728(20) 735(13) 738(13) 738
Thompson, W.E.      624(129) 657
Thorson, W.R.      2(3) 33(3) 37 145(35) 195 284(15) 320
Thoss, M.      404(228) 430
Thouless determinantal wave function, electron nuclear dynamics (END), molecular systems, final-state analysis      343—349
Thouless determinantal wave function, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      335—337
Thouless, D.J.      330(23) 352
Three-dimensional representation, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      635—640
Three-dimensional representation, Renner — Teller effect, triatomic molecules      597—598
Three-dimensional representation, Renner — Teller effect, triatomic molecules, benchmark handling      621—623
Three-state system, loop construction, photochemical reactions      455
Three-state system, non-adiabatic coupling, Longuet — Higgins phase-based treatment      157—168
Three-state system, non-adiabatic coupling, Longuet — Higgins phase-based treatment, $D+H_2$ reaction, quasiclassical trajectory (QCT) calculation      160—163
Three-state system, non-adiabatic coupling, Longuet — Higgins phase-based treatment, $D+H_2$ reaction, semiclassical calculation      163—167
Three-state system, non-adiabatic coupling, Longuet — Higgins phase-based treatment, $H+D_2$ reaction, quasiclassical trajectory calculation      167—168
Three-state system, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting conical intersections      81—89
Three-state system, non-adiabatic coupling, numerical study      134—137
Three-state system, non-adiabatic coupling, numerical study, extended Born — Oppenheimer equations      174—175
Three-state system, non-adiabatic coupling, quantization      59—60
Three-state system, non-adiabatic coupling, quantization, extended Born — Oppenheimer equations      173—174
Three-state system, non-adiabatic coupling, sign flip derivation      73—77
Three-state system, non-adiabatic coupling, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      113—117
Three-state system, non-adiabatic coupling, theoretical-numeric approach      101—103
Three-state system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices      92
Thuemmel, H.      82(105) 109(105) 141 202(51) 274 234(278) 281 624(118) 625—626(141) 656—657
Tildesley, D.      371(121) 427
Time evolution, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      328—330
Time evolution, wave function analycity and      200—205
Time evolution, wave function analycity and, Wigner time-reversal operator      212—213
Time-dependent ground state (TDGS), molecular systems, component amplitude analysis, near-adiabatic limit      220—224
Time-dependent Hartree — Fock (TDHF) approximation      see also "Multiconfiguration time-dependent Hartree (MCTDH) method"
Time-dependent Hartree — Fock (TDHF) approximation, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      332—333
Time-dependent perturbation theory, electron nuclear dynamics (END), molecular systems      340—342
Time-dependent variational principle (TDVP), electron nuclear dynamics (END)      327—337
Time-dependent variational principle (TDVP), electron nuclear dynamics (END), basic ansatz      330—333
Time-dependent variational principle (TDVP), electron nuclear dynamics (END), free electrons      333—334
Time-dependent variational principle (TDVP), electron nuclear dynamics (END), general electron structure      334—337
Time-dependent variational principle (TDVP), electron nuclear dynamics (END), theoretical background      325
Time-dependent wavepacket technique, non-adiabatic coupling, Longuet — Higgins phase-based treatment, quasi-Jahn — Teller model      157
Time-reversal adapted configuration state functions (TRA-CSFs), conical intersections, spin-orbit interaction      561—563
Time-reversal symmetry, conical intersections, geometric phase theory      5—8
Time-reversal symmetry, conical intersections, perturbation theory      563—564
Time-reversal symmetry, conical intersections, spin-orbit interaction      559—561
Time-reversal symmetry, permutational symmetry      724—728
Tinkham, M.      560(15) 580
Titchmarsh, E.C.      217(245) 228(257) 232(257) 280
Toennies, J.P.      82(95) 118(95) 141 345(46 48) 346—347(50) 353 365(111) 427
Toll, J.S.      208(149) 277
Tomasi, J.      363(95) 426
Tomonaga, S.-I.      229(259) 280
Tonachini, G.      479(89 92) 480(92) 502
Tonomura, A.      209(155) 277
Top, Z.H.      41(54) 63(84) 82(54) 95(54) 118(54) 140—141 144(19—20) 147(19—20) 194
Topaler, M.      398(211) 399(215) 403(211 224) 430
Topographical properties, conical intersections, energy calculations      568—569
Topographical properties, conical intersections, local parameters      569
Topological matrix, molecular systems, modulus-phase formalism, Dirac electrons      270—272
Topological matrix, non-adiabatic coupling, line integral conditions, adiabatic-to-diabatic transformation matrix      50—53
Topological matrix, non-adiabatic coupling, spin formation      70—73
Total molecular wave function, permutational symmetry      661—668 674—678
Trajectory properties, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      407—411
Trajectory properties, direct molecular dynamics, mixed-state trajectory      396—397
Trajectory surface hopping model (TSHM), direct molecular dynamics      397—399
Trajectory surface hopping model (TSHM), direct molecular dynamics, error sources      403—404
Trajectory surface hopping model (TSHM), electron nuclear dynamics (END), molecular systems      345—349
Trajectory “swarms”, direct molecular dynamics, nuclear motion Schroedinger equation      369—373
Trajectory “swarms”, direct molecular dynamics, properties of      420—422
Trammel, G.T.      206(106) 276
Transformational invarant, conical intersections      567
Transformational invarant, permutational symmetry      737—738
Transition dipole moment, direct molecular dynamics, adiabatic systems      373—377
Transition probability, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      152—155
Traverno, O.      481—482(95) 502
Travis, D.N.      618(73) 655
Trevor, D.J.      625(136) 657
Tri-state degeneracy, non-adiabatic coupling      80—81
Triangular phase diagram, geometric phase theory, single-surface nuclear dynamics, symmetry properties      29—31
Triatomic molecules, permutational symmetry, nuclear spin function      679—680
Triatomic molecules, permutational symmetry, total molecular wave function      664—668
Triatomic molecules, quantum reaction dynamics, adiabatic-to-diabatic transformation, two-state system      302—309
Triatomic molecules, quantum reaction dynamics, theoretical background      285—286
Triatomic molecules, quantum reaction dynamics, two-state system      309—319
Triatomic molecules, quantum reaction dynamics, two-state system, partial wave expansion      312—317
Triatomic molecules, quantum reaction dynamics, two-state system, propagation scheme and asymptotic analysis      317—318
Triatomic molecules, quantum reaction dynamics, two-state system, symmetrized hyperspherical coordinates      310—312
Triatomic molecules, Renner — Teller effect, benchmark handling      621—623
Triatomic molecules, Renner — Teller effect, effective Hamiltonians      623—624
Triatomic molecules, Renner — Teller effect, Hamiltonian equations      610—615
Triatomic molecules, Renner — Teller effect, minimal models      615—618
Triatomic molecules, Renner — Teller effect, multi-state effects      624
Triatomic molecules, Renner — Teller effect, pragmatic models      618—621
Triatomic molecules, Renner — Teller effect, spectroscopic properties      598—610
Triatomic molecules, Renner — Teller effect, spectroscopic properties, linear molecules, singlet state vibronic coupling      598—600
Triatomic molecules, Renner — Teller effect, spectroscopic properties, linear molecules, vibronic/spin-orbit coupling      600—605
Triatomic molecules, Renner — Teller effect, spectroscopic properties, nonlinear molecules      606—610
Triatomic molecules, Renner — Teller effect, theoretical principles      587—598
Trieling, R.      619(82) 655
Trigonal degeneracies, molecular systems, multidegenerate nonlinear coupling, continuous tracing, component phase      237—241
Trucks, G.W.      363(95) 426
Truhlar, D.G.      2—4(10) 9(10) 11(10) 24—25(10) 28(10 38) 29—31(10) 37 82(100—102) 104(118—119) 118(100—102) 141—142 144(27 29) 145(31 41) 160(76) 161(76) 162(77) 166(76) 195—196 204(76) 209(160) 250(76) 275 277 284(23) 285(51) 290(23) 297(76) 301(51 76) 320—322 326(6) 352 356(3) 358(32 44—45) 378(148) 385(182) 395(32) 397(202) 398(32 211) 399(213 215) 402(222) 403(32 211 213 215 222 224) 424—425 428—430 487(106) 503 660(20) 668(46) 685(59) 687(59) 694(59) 702(59) 713(59) 715(82) 720(92) 728(20) 738(82) 739—741
Truong, T.N.      326(6) 352
Trushin, S.A.      434(3) 479(3) 500
Tsai, Y.-J.      624(128) 657
Tuckett, R.P.      145(52) 195
Tully, J.C.      41(3) 49(3) 82(3) 104(3) 134(3) 138 147(61) 195 326(10) 345(10) 352 358(30—31) 377(146) 395(30—31) 397(201 203) 398(203) 403(30 203 223) 424 428—430 719(89) 741
Turro, N.J.      493(127) 503
Tutcher, B.      625(146) 639(146) 657
Two-coordinate model, molecular photochemistry      493—496
Two-dimensional representations, conical intersections, spin-orbit coupling      558—559
Two-dimensional representations, permutational symmetry, GBO approximation/geometric phase, Hilbert space model      718—721
Two-state system, chemical reactions, conical intersection      436—438
Two-state system, electronic states, adiabatic-to-diabatic transformation      300—309
Two-state system, electronic states, triatomic quantum reaction dynamics      309—319
Two-state system, electronic states, triatomic quantum reaction dynamics, partial wave expansion      312—317
Two-state system, electronic states, triatomic quantum reaction dynamics, propagation scheme and asymptotic analysis      317—318
Two-state system, electronic states, triatomic quantum reaction dynamics, symmetrized hyperspherical coordinates      310—312
Two-state system, non-adiabatic coupling, Herzberg — Longuet — Higgins phase      185
Two-state system, non-adiabatic coupling, quantization      58—59
Two-state system, non-adiabatic coupling, single conical intersection solution      97—101
Two-state system, non-adiabatic coupling, Wigner rotation/adiabatic-to-diabatic transformation matrices      92
Two-state system, non-adiabatic coupling, “real” system properties      104—112
Two-state system, non-adiabatic coupling, “real” system properties, $C_2H$-molecule: (1, 2) and (2, 3) conical intersections      109—112
Two-state system, non-adiabatic coupling, “real” system properties, $H_3$ system and isotopic analogues      103—109
Two-state system, Renner — Teller effect, triatomic molecules      624
Two-state system, wave functions, molecular systems      202—205
Uberna, R.      204(89) 208(89) 211(89) 275
Uggerud, E.      360(77) 371(77) 426
Umansky, V.      200(17) 273
Unbreakable multidegeneracy, non-adiabatic coupling      81
Unitary transformation matrices, conical intersection location      564—565
Unitary transformation matrices, electron nuclear dynamics (END), molecular systems, final-state analysis      343—349
Unitary transformation matrices, molecular systems, component amplitude analysis, near-adiabatic limit      223—224
Unitary transformation matrices, molecular systems, Yang — Mills fields      254—255
Unitary transformation matrices, non-adiabatic coupling, analycity properties      124—126
Unitary transformation matrices, non-adiabatic coupling, extended Born — Oppenheimer equations      169—171
Unitary transformation matrices, non-adiabatic coupling, extended Born — Oppenheimer equations, closed path systems      171—173
Unitary transformation matrices, non-adiabatic coupling, line integral conditions, adiabatic-to-diabatic transformation matrix      51—53
Unitary transformation matrices, non-adiabatic coupling, three-state molecular system, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      115—117
Unitary transformation matrices, permutational symmetry, group theoretical properties      673—674
Unitary transformation matrices, permutational symmetry, time-dependent Schroedinger equation      723—728
Unitary transformation matrices, wave function transformation      213—214
Untch, A.      366(117) 427
Untruncated Hilbert space, molecular systems, Yang — Mills fields      253—254
Upton, T.H.      134—135(135) 137(135) 142
Urban, W.      624(125—126) 656
Urbina, C.      248(314) 282
Vaccaro, J.A.      208(141) 277
Vaida, V.      481(93) 502
Vaidman, L.      208(146) 277
Valence bond (VB) structure, conical intersection research      493—496
Valence bond (VB) structure, conical intersection, two-state chemical reactions      437—438
Valence bond (VB) structure, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      406—411
Valence bond (VB) structure, direct molecular dynamics, theoretical background      359—361
Valence bond (VB) structure, phase-change rule, chemical reactions      450—453
Valence bond (VB) structure, phase-change rule, cyclopentadienyl cation (CPDC)      468—472
Valence bond (VB) structure, phase-change rule, cyclopentadienyl radical (CPDR)      464—467
van Bosch, H.      3(17) 20(17) 37
Van der Hart, W.J.      438(31) 493—494(31) 500
van der Lugt, W.T.A.M.      448(47) 450(47) 494(47) 501
Van Gogh, M.      619(84) 655
van Hulst, N.F.      206(122) 276
van Lenthe, E.      580(38) 581
van Vleck, J.H.      613(57) 655
van Wees, B.J.      248(309) 281
Varandas, A.J.C.      13(25) 28(25) 37 41(11 27 30) 42—43(11) 73(11) 104(11 118) 107(11) 109(11) 121(30) 139 142 145(34) 195 202(59—60) 233(271—272) 248(59) 274 280 285(52) 321 359(56) 425 660(1—2 4—8 11—12) 661(2) 668(2 4—5 11—2) 676(57—58) 685(59) 687(59) 692(60—61) 693(5 66—70) 694(59) 696(58 60 71) 698(74) 699(69—70) 701(11) 702(11 59) 703(11) 704(12) 705(11—12) 706(11 77) 708(12) 709(11) 712(80) 713(2 4—5 7—8 59 68 82) 714(60) 715(4) 716(1 5 74) 717(6 8) 719(4—5 87—88) 720—721(4—5) 738 740—741
Varshalovich, D.A.      661(36) 739
Vdovin, Y.A.      671(55) 673(55) 740
Vector coupling coefficients, multidegenerate nonlinear coupling, higher order coupling      243—244
Vector-potential theory, canonical intersection, historical background      146—148
Vector-potential theory, geometric phase theory, historical background      3—4
Vector-potential theory, geometric phase theory, single-surface nuclear dynamics, molecular Aharonov — Bohm effect      25—31
Vector-potential theory, non-adiabatic coupling, curl condition, Yang — Mills field      93—97
Vector-potential theory, non-adiabatic coupling, derivation      191—194
Vector-potential theory, non-adiabatic coupling, quantum dressed classical mechanics, geometric phase effect      180
Vector-potential theory, non-adiabatic coupling, semiclassical calculation, $D+H_2$ reaction      164—167
Vector-potential theory, Yang — Mills field      203—205
Vedral, V.      248(312) 281
Venkitachalam, T.V.      633(161) 657
Verlet, L.      371(120) 427
Vertiainen, E.M.      208(148) 277
Vetterling, W.T.      330(22) 352
Vibok, A.      104(117) 142
Vibration-rotation problem, Renner — Teller effect, triatomic molecules      612—615
Vibrational state analysis, electron nuclear dynamics (END), molecular systems      345—349
Vibrational state analysis, permutational symmetry, degenerate/near-degenerate levels      728—733
Vibrational state analysis, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      703—711
Vibrational wave function, permutational symmetry      687—692
Vibronic coupling (VC) model      see also "Non-adiabatic coupling"
Vibronic coupling (VC) model, direct molecular dynamics, mixed state trajectory and      403—404
Vibronic coupling (VC) model, direct molecular dynamics, non-adiabatic coupling      381—393
Vibronic coupling (VC) model, direct molecular dynamics, non-adiabatic coupling, adiabatic properties      382—384
Vibronic coupling (VC) model, direct molecular dynamics, non-adiabatic coupling, conical intersections      386—389
Vibronic coupling (VC) model, direct molecular dynamics, non-adiabatic coupling, diabatic properties      384—386
Vibronic coupling (VC) model, direct molecular dynamics, non-adiabatic coupling, Hamiltonian model      389—393
Vibronic coupling (VC) model, direct molecular dynamics, theoretical background      360—361
Vibronic coupling (VC) model, geometric phase theory, single-surface nuclear dynamics, multiplet ordering      24—25
Vibronic coupling (VC) model, geometric phase theory, spin-orbit coupling      20—22
Vibronic coupling (VC) model, Longuet — Higgins phase-change rule, loop construction      462—472
Vibronic coupling (VC) model, molecular systems, electronic states      202—205
Vibronic coupling (VC) model, permutational symmetry      682—683
Vibronic coupling (VC) model, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      699—711
Vibronic coupling (VC) model, permutational symmetry, static Jahn — Teller effect      694—698 696—698
Vibronic coupling (VC) model, Renner — Teller effect, nonlinear molecules      606—610
Vibronic coupling (VC) model, Renner — Teller effect, tetraatomic molecules      628—631
Vibronic coupling (VC) model, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      636—640 637—640
Vibronic coupling (VC) model, Renner — Teller effect, triatomic molecules, singlet state      598—600
Vibronic coupling (VC) model, Renner — Teller effect, triatomic molecules, spin-orbit coupling and      600—605
Vijay, A.      207(128) 276
Villani, G.      403(226) 430 491(120) 503
Villas-Boas, C.J.      206(110) 276
Villeneuve, D.M.      212(200) 278
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå