Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Grunbaum, A.      212(213) 279
Guimare, Y.      206(110) 276
Guldenberg, A.      364(105) 427
Gureyev, T.E.      207(125) 217(125) 276
Guth, E.      206(106) 276
Gyftopoulos, E.P.      212(219) 279
Haas, Y.      211(192) 248(192) 278 435(25) 436(27—28) 438(28) 447(25 40—41) 448(27—28 40 48—49) 449(28 51) 453(49) 473(83) 475(83) 483(28 49 98) 492(40—41) 496(138) 500—504
Hack, M.      358(32) 395(32) 398(32) 399(213 215) 402(222) 403(32 213 215 222 224) 424 430
Halasz, G.      104(117) 142
Halevy, E.A.      479(91) 502
Hallin, K-E.J.      598(25—26) 604(26) 606—607(25) 620—621(25—26) 654
Halliwell, J.J.      212(216) 279
Halvick, P.      82(100) 118(100) 141
Ham, F.S.      3—4(11) 18(11) 24—25(11) 31—32(11) 37 209(162) 232(162) 233(269) 277 280
Hamilton — Jacobi equation, molecular systems, modulus-phase formalism      262—265
Hamilton — Jacobi equation, molecular systems, modulus-phase formalism, Lagrangean density correction term      270
Hamilton — Jacobi equation, molecular systems, modulus-phase formalism, nearly nonrelativistic limit      269
Hamilton, I.P.      363(100) 427
Hamiltonian equations, conical intersections, electronic Hamiltonian, spin-orbit interactions      559
Hamiltonian equations, conical intersections, geometric phase theory      4—8
Hamiltonian equations, crude Born — Oppenheimer approximation, hydrogen molecule      512—516
Hamiltonian equations, direct molecular dynamics, vibronic-coupling model      389—393
Hamiltonian equations, molecular systems, Yang — Mills fields, observability of      259—261
Hamiltonian equations, non-adiabatic coupling, quasiclassical trajectory (QCT) calculation, three-particle reactive system, $D+H_2$ reaction      160—163
Hamiltonian equations, non-adiabatic coupling, semiclassical calculation, $D+H_2$ reaction      163—167
Hamiltonian equations, Renner — Teller effect, tetraatomic molecules, basic properties      626—628
Hamiltonian equations, Renner — Teller effect, triatomic molecules, effective Hamiltonians      623—624
Hamiltonian equations, Renner — Teller effect, triatomic molecules, nonlinear molecules      606—610
Hamiltonian equations, Renner — Teller effect, triatomic molecules, nonrelativistic vs. relativistic selection      610—615
Hammerich, A.      364(105) 427
Hammes-Schiffer, S.      377(146) 428
Hampel, C.      41(6) 138
Hancock, G.G      685(59) 687(59) 694(59) 702(59) 713(59) 740
Handy — Carter (HC) equation, Renner — Teller effect, triatomic molecules      611—615 618—619
Handy, Carter, and Rosmus (HCR) theory, Renner — Teller effect, triatomic molecules, benchmark handling      621—623
Handy, N.G:      506(9) 555 612(48—51) 621(88) 622(48—51 88 91 94 97) 623(94) 624(130) 626(155—158) 654—657
Hanrath, M.      646(173) 658
Hansen, A.      418(250) 431
Hansen, A.E.      506(8) 555
Hansen, F.      379(150) 428
Harich, S.      211(186) 248(186) 278
Harmonic oscillator, crude Born — Oppenheimer approximation, hydrogen molecule, Hamiltonian equation      515—516
Harmonic oscillator, direct molecular dynamics, Gaussian wavepackets and multiple spawning      399—402
Harmonic oscillator, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation      151—155
Harmonic oscillator, permutational symmetry, degenerate/near-degenerate vibrational levels      731—733
Harmonic oscillator, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      632—633
Harmonic oscillator, Renner — Teller effect, tetraatomic molecules, Hamiltonian equations      627—628
Harmonic oscillator, Renner — Teller effect, triatomic molecules      587—598
Harmonic oscillator, Renner — Teller effect, triatomic molecules, minimal models      615—618
Haroche, S.      200(20) 273
Harris, R.A.      3(13) 37
Harrison, R.      363(99) 427
Hartke, B.      285(39) 321
Hartmann, M.      415(249) 431
Hartree — Fock calculations, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems      404—411
Hartree — Fock calculations, permutational symmetry, potential energy surfaces      692—694
Harvey, S.      359(60) 425
Hase, W.      356(2) 360(78) 372(2 78) 376(143) 423 426 428
Hase, W.L.      660(17) 739
Hasegawa, Y.      210(170) 278
Hatsopoulos, G.N.      212(219) 279
Hau, L.V.      249(315) 282
Havenith, M.      624(125—126) 656
Havinga, E.      493(126) 503
HCCS radical, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      633—640
Head-Gordon, M.      363(95) 426
Heather, R.      358(26) 379(26) 424
Heaven, M.G      579(36—37) 581
Heaviside function, molecular systems, component amplitude analysis, reciprocal relations      216—217
Heaviside function, non-adiabatic coupling, curl condition, pseudomagnetic field      95—96
Hehareug-Dao, D.      41(50—51) 140
Hehaureg-Dao, D.      242(294—295) 281
Hehre, W.J.      349(54) 353
Heiblum, M.      200(17) 273
Heida, J.P.      248(309) 281
Heidrich, D.      358(46) 425
Heilbronner, E.      381(169) 429\ 451(45) 494(45) 501
Heitler — London ground state, geometric phase theory, adiabatic eigenstates      11
Helgaker algorithm, direct molecular dynamics, nuclear motion Schroedinger equation      371—373
Helgaker algorithm, direct molecular dynamics, theoretical background      360—361
Helgaker — Chen algorithm, direct molecular dynamics, ab initio multiple spawning (AIMS)      412—414
Helgaker — Chen algorithm, direct molecular dynamics, nuclear motion Schroedinger equation      371—373
Helgaker, T.      372(124—125) 373(130) 406(124—125) 427—428
Helicopter reactions, phase-change rule      459—460
Helicopter reactions, quantitative photochemical analysis      485—487
Heller equations, direct molecular dynamics, Gaussian wavepackets and multiple spawning      399—402
Heller, E.J.      212(202 204) 229(260) 278 280 358(22—24) 359(77) 371(77) 374(132—133) 375(138) 377(22 24) 378(24) 380(23—24) 424 426 428
Hellmann — Feynman theorem, adiabatic-to-diabatic transformation matrix      49—50
Hellmann — Feynman theorem, degenerate states chemistry      ix—xiii
Hellmann — Feynman theorem, direct molecular dynamics, nuclear motion Schroedinger equation      372—373
Hellmann — Feynman theorem, direct molecular dynamics, vibronic coupling, adiabatic effects      382—384
Hellmann — Feynman theorem, electron nuclear dynamics (END), time-dependent variational principle (TDVP)      332—333
Hellmann — Feynman theorem, geometric phase theory, adiabatic eigenstates, conical intersections      8—11
Hellmann — Feynman theorem, nuclear motion Schroedinger equation      420
Hellmann — Feynman theorem, three-state molecular system      134—137
Hellmann — Feynman theorem, two-state molecular system, $H_3$ molecule      104—109
Hellmann, H.      373(128) 427
Helmzholz theorem, electronic state adiabatic representation, first-derivative coupling matrix      291
Henriksen, N.      379(150) 428
Herman — Kluk method, direct molecular dynamics, Gaussian wavepacket propagation      380—381
Herman, M.F.      212(203) 278 358(25 28) 380(25) 397(28) 399(212) 424 430 625(133) 657
Hermite basis functions, direct molecular dynamics, Gaussian wavepacket propagation      380—381
Hermite basis functions, non-adiabatic coupling, quantum dressed classical mechanics      178— 179
Hermite basis functions, non-adiabatic coupling, semiclassical calculation, D + H2 reaction      163—167
Hermitian matrix, conical intersections, spin-orbit interaction      560—561
Hermitian matrix, permutational symmetry, antilinear operators      722—723
Hermitian matrix, phase properties      207—208
Herrero, V.J.      162(79—80 84—87) 196
Herschbach, D.R.      144(6—7) 194
Herzberg — Longuet — Higgins phase, Jahn — Teller model      185—186
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, historical background      144—148
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, Jahn — Teller effect      185—186
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system      157—168
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, Longuet — Higgins phase-based treatment, two-dimensional two-surface system      150—157
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, quantum dressed classical mechanics      177—183
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, quantum dressed classical mechanics, geometric phase effect      180—183
Herzberg — Longuet — Higgins phase, non-adiabatic coupling, quantum dressed classical mechanics, theoretical background      177—180
Herzberg — Longuet — Higgins phase, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      698—711
Herzberg — Longuet — Higgins phase, permutational symmetry, total molecular wave function      667—668
Herzberg, G.      2(6) 5(6) 30(41) 31(6) 37—38 41—42(16) 53(16) 58(16) 68(16) 106(16) 116(16) 121(16) 139 144(1 8) 145—146(1) 194 233(274) 235—236(284) 240(274) 280 284(20) 320 357(10) 424 434(12) 441(12) 443(12) 446(12) 461(12) 463(12) 474(12) 500 584(4—5) 586(5) 609(37) 618(5) 623(37) 625(131) 653—654 657 661(28) 667(43) 669(28) 682(28) 694—695(28) 698(43) 704—705(28) 712(28) 718(28) 730(28) 736(28) 739
Hess, B.A.      559(13) 571(13) 580 597(23) 654
Heuss, W.D.      213(236) 279
Hiberty, P.G      436(27) 448(26) 450(26) 473(82) 495(82) 500 502
Hilbert space      see also "Full-Hilbert space" "Sub-Hilbert "Sub-sub-Hilbert
Hilbert space, Berry’s phase      209—210
Hilbert space, molecular systems, Yang — Mills fields, untruncated Hilbert space      253—254
Hilbert space, non-adiabatic coupling, adiabatic-to-diabatic transformation matrix, quasidiabatic framework      54—56
Hilbert space, non-adiabatic coupling, Born — Oppenheimer approximation      189—191
Hilbert space, non-adiabatic coupling, Born — Oppenheimer — Huang equation      44—45
Hilbert space, non-adiabatic coupling, extended Born — Oppenheimer equations      168—171
Hilbert space, non-adiabatic coupling, theoretical background      42—44
Hilbert space, permutational symmetry, GBO approximation/geometric phase, Hilbert space model      718—721
Hilbert space, phase properties, operators      207—208
Hilbert space, quantum theory      199
Hill, E.L.      212(213) 279
Hillery, M.      375(140) 428
Hipes, P.G.      318(91—92) 322
Hirsch, G.      41(42—43) 82(52—53) 140 290(63) 321 624(113) 656
Hirschfelder, J.O.      144(10) 194 284(17) 320
Hixson, S.S.      459(66) 502
Ho, T.-S.      326(8) 352
Hobey, W.D.      41(31) 139 241(286) 281
Hochlaf, M.      622(100) 656
Hoffman, B.G      571(30) 581
Hoffman, R.      450(52) 458(59) 479(52) 493—494(52) 501
Holland, P.R.      263(324) 265(324) 271(324) 282
Hollebeek, T.      326(8) 352
Homonuclear molecules, permutational symmetry, electronic wave function      680—682
Homonuclear molecules, permutational symmetry, nuclear spin function      679—680
Homonuclear molecules, permutational symmetry, rovibronic/vibronic wave functions      682—683
Homonuclear molecules, permutational symmetry, vibrational wave function      687—692
Horowitz, C.J.      104(119) 142 160(76) 196
Hougen, Bunker, and Johns (HBJ) configuration, Renner — Teller effect, tetraatomic molecules, Hamiltonian equations      626—628
Hougen, Bunker, and Johns (HBJ) configuration, Renner — Teller effect, triatomic molecules      614—615
Hougen, Bunker, and Johns (HBJ) configuration, Renner — Teller effect, triatomic molecules, pragmatic models      619—621
Hougen, J.T.      604(32) 614(60) 618(32 72) 619(60) 654—655
Houk, K.N.      459(65) 490(65) 502
Howard, B.J.      624(106) 656
Howard, J.B.      610(39) 613(58) 654—655
Hoy, A.R.      611(43) 654 614(62 64) 615(62 64) 655
Hsu, Y.-G      624(127—128) 657
Hu, B.      224(253) 280
Huang, K.      40(2) 82(2) 138 144(17) 194 202(63) 275 284(3) 289(3) 320 506—507(7) 511(7) 555 662(39) 664(39) 667(39) 739
Huber, D.      212(204) 278
Huber, J.R.      366(118) 427
Hudson, B.S.      381(174) 393(174) 429
Hueckel, E.      436(29) 448(29) 500
Hueckel’s 4n + 2 rule, conical intersections, two-state chemical reactions      436—438
Hueckel’s 4n + 2 rule, phase change rule, ammonia and chiral systems      457—458
Hueckel’s 4n + 2 rule, phase change rule, orbital overlap      451—452
Hueckel’s 4n + 2 rule, phase change rule, pericyclic reactions      448—450
Hueckel’s 4n + 2 rule, phase change rule, pi bond reactions      452—453
Hughes, D.J.      145(52) 195
Hund’s coupling, permutational symmetry, rotational wave function      684—687
Hunt, P.      360(87) 411—412(87) 426
Hutter, J.      360(74) 426
Huxley, P.      676(57) 740
Hwang, D.W.      211(186) 248(186) 278
Hwang, J.-T.      201(43) 214(43) 274 411(241) 430
Hydrodynamic theory, direct molecular dynamics, trajectory “swarms”      421—422
Hydrogen molecules, $H_3$ molecule, Longuet — Higgins phase-change rule, loop construction      463—472
Hydrogen molecules, $H_3$ molecule, phase-change rule      443—446
Hydrogen molecules, $H_3$ molecule, two-state system, adiabatic-to-diabatic transformation      301—309
Hydrogen molecules, $H_3$ molecule, two-state system, non-adiabatic coupling      104—109
Hydrogen molecules, $H_4$ molecule, phase-change rule      443—446
Hydrogen molecules, crude Born — Oppenheimer approximation, Hamiltonian equation      512—516
Hydrogen molecules, crude Born — Oppenheimer approximation, minimum basis set calculation      542—550
Hydrogen molecules, crude Born — Oppenheimer approximation, nuclei interaction integrals      527
Hydrogen molecules, permutational symmetry, total molecular wave function      675—678
Hyperspherical coordinates, electronic states, adiabatic-to-diabatic transformation, two-state system      302—309
Hyperspherical coordinates, electronic states, triatomic quantum reaction dynamics      310—312
Hyperspherical coordinates, non-adiabatic coupling, Longuet — Higgins phase-based treatment, three-particle reactive system      158—168
Hyperspherical coordinates, non-adiabatic coupling, semiclassical calculation, $D+H_2$ reaction      164—167
Hyperspherical coordinates, non-adiabatic coupling, two-state molecular system, $H_3$ molecule      106—109
Hyperspherical coordinates, non-adiabatic coupling, vector potential formulation      191—194
Hyperspherical coordinates, permutational symmetry, potential energy surfaces      693—694
Hyperspherical coordinates, permutational symmetry, total molecular wave function      668
Ichihara, A.      118(128) 142
Imry, Y.      215(241) 218(241) 280
In-phase states, conical intersection, two-state systems      438
In-phase states, phase-change rule, pericyclic reactions      448—450
Independent Gaussian approximation (IGA), direct molecular dynamics, Gaussian wavepacket propagation      379—383
Infinite-order sudden approximation (IOSA), electron nuclear dynamics (END), molecular systems      345—349
Initial relaxation direction (IRD), direct molecular dynamics, theoretical background      359—361
Innes, K.K.      381(172) 429
Inorganic compounds, loop construction, photochemical reactions      481—482
Inoue, Y.      473(84) 502
Inoui, Y.      478(88) 502
Integral properties, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, nuclei interaction      519—527
Integral properties, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, overlap integrals      518—519
Integral properties, crude Born — Oppenheimer approximation, equations for      551—555
Interference effects, molecular systems      211
Interference effects, phase properties      206—207
Interference effects, quantum theory      200
Intraanchor reactions, conical intersection, two-state systems      437—438
Intramolecular electron transfer, electron nuclear dynamics (END)      349—351
Intrinsic reaction coordinate (IRC), direct molecular dynamics, theoretical background      358—361
Invariant operators, permutational symmetry, conical intersection, adiabatic state      735—737
Ioeffe, A.      207(123) 248(123) 276
Irreducible representations (IRREPs), permutational symmetry, degenerate/near-degenerate vibrational levels      728—733
Irreducible representations (IRREPs), permutational symmetry, electronic wave function      681—682
Irreducible representations (IRREPs), permutational symmetry, group theoretical properties      669—674
Irreducible representations (IRREPs), permutational symmetry, invariant operators      735—737
Irreducible representations (IRREPs), permutational symmetry, nuclear spin function      678—680
Irreducible representations (IRREPs), permutational symmetry, time-dependent equations      727—728
Irreducible representations (IRREPs), permutational symmetry, total molecular wave function      667—668
Irreducible representations (IRREPs), permutational symmetry, vibrational wave function      688—692
Ischtwan, J.      361(89) 426
Isomerization reactions, loop construction, benzene molecules      479—481
Isomerization reactions, loop construction, cyclooctenes      473—474
Isomerization reactions, loop construction, ethylene photolysis      472—473
Isomerization reactions, phase-change rules, loop construction      456
Isomerization reactions, quantitative photochemical analysis      482—487
Isotopomers, permutational symmetry, ${}^1H_3$ molecule      713—717
Isotopomers, permutational symmetry, alklali metal trimers      712—713
Isotopomers, permutational symmetry, vibrational wave function      689—692
Ito, M.      491(122) 503 625(134) 657
Ito, Y.      604(30) 654
Itzykson, C.      203(67) 204(67) 250(67) 275
Iung, C.      364(106—107) 427
Iwamura, H.      482(97) 502
Iyengar, S.      360(75) 426
Jackiw, R.      203—204(67) 213(67) 250(67) 254(67) 262(67) 275
Jackox, M.E.      624(129) 657
Jackson, B.      358(26) 379(26) 424
Jackson, J.D.      43(78) 140
Jackson, J.L.      144(12) 194
Jacobi coordinates, electronic state adiabatic representation, Born — Huang expansion      286—289
Jacobi coordinates, electronic states, triatomic quantum reaction dynamics      310—312
Jacobi coordinates, non-adiabatic coupling, vector potential formulation      191—194
Jaeckle, A..      357(20) 364(20) 365(116) 423(20) 424 427
Jagod, M.-F.      625(147) 657
Jahn — Teller effect, canonical intersection, Herzberg — Longuet — Higgins theorem, historical background      144—148
Jahn — Teller effect, conical intersection location      489
Jahn — Teller effect, degenerate states chemistry      x—xiii
Jahn — Teller effect, direct molecular dynamics, conical intersections      388—389
Jahn — Teller effect, direct molecular dynamics, vibronic coupling      381—382 391—393
Jahn — Teller effect, geometric phase theory, $E\times\epsilon$ problem      17—23
Jahn — Teller effect, geometric phase theory, $E\times\epsilon$ problem, linear Jahn — Teller effect      18—20
Jahn — Teller effect, geometric phase theory, $E\times\epsilon$ problem, principles of      2—4
Jahn — Teller effect, geometric phase theory, $E\times\epsilon$ problem, quadratic Jahn — Teller effect      22—23
Jahn — Teller effect, geometric phase theory, $E\times\epsilon$ problem, spin-orbit coupling, ${}^2E$ state      20—22
Jahn — Teller effect, geometric phase theory, conical intersections      5—8
Jahn — Teller effect, geometric phase theory, single-surface nuclear dynamics, vector-potential, molecular Aharonovo — Bohm effect      28—31
Jahn — Teller effect, Longuet — Higgins phase-change rule, loop construction      461—472
Jahn — Teller effect, multidegenerate nonlinear coupling, $E\times\epsilon$ problem      233—234 238—241
Jahn — Teller effect, multidegenerate nonlinear coupling, higher order coupling      243—248
Jahn — Teller effect, multidegenerate nonlinear coupling, higher order coupling, complex representation      243—244
Jahn — Teller effect, multidegenerate nonlinear coupling, higher order coupling, interpretation      248
Jahn — Teller effect, multidegenerate nonlinear coupling, higher order coupling, nonlinear diagonal elements      247
Jahn — Teller effect, multidegenerate nonlinear coupling, higher order coupling, off-diagonal coupling      246—247
Jahn — Teller effect, multidegenerate nonlinear coupling, higher order coupling, off-diagonal squaring      245—246
Jahn — Teller effect, non-adiabatic coupling, Herzberg — Longuet — Higgins phase      185—186
Jahn — Teller effect, non-adiabatic coupling, Longuet — Higgins phase      119—122
Jahn — Teller effect, non-adiabatic coupling, Longuet — Higgins phase, two-dimensional two-surface system, quasi-Jahn — Teller scattering calculation      150—155
Jahn — Teller effect, non-adiabatic coupling, theoretical background      41—44
Jahn — Teller effect, non-adiabatic coupling, topological spin insertion      70—73
Jahn — Teller effect, non-adiabatic coupling, two-state molecular system      58—59
Jahn — Teller effect, permutational symmetry, ${}^2H_3$ isotopomers      713—717
Jahn — Teller effect, permutational symmetry, conical intersection, adiabatic state      733—735
Jahn — Teller effect, permutational symmetry, dynamic effect      698—711
Jahn — Teller effect, permutational symmetry, electron/nuclear spin function      712
Jahn — Teller effect, permutational symmetry, potential energy surfaces      692—694
Jahn — Teller effect, permutational symmetry, static effect      694—698
Jahn — Teller effect, phase properties      209
Jahn, H.A.      2(4—5) 5(4) 6—7(4—5) 31(4—5) 37 41(18) 68(18) 116(18) 139 144—145(2) 194 233(267) 280 381(164) 428 461(69) 502 696(72) 712(79) 740
Jain, S.R.      200(11) 210(11) 242(11) 270(11) 273
Jammer, M.      199(1) 273
Jarzynski, J.      212(201) 278
Jasper, A.      399(213) 403(213) 430
Jaynes — Cummings model, phase properties      206
Jensen, H.      360(77) 371(77) 426
Jensen, J.      363(96) 426
Jensen, J.O.      290(68) 321
Jensen, P.      584(1—2) 586(2 15) 604(2) 612(55) 614(65—67) 618(55) 623(2 15 66—67 102—105) 653—656
Jin, Z.K.      625(146) 639(146) 657
Johns, J.W.C:      609(37) 623(37) 654 614(60) 619(60) 654—655
Johnson, B.      363(95) 426
Johnson, B.R.      106(124) 142 158(72—73) 159(72) 182(72—73) 196 313(87) 318(87) 322 661(32—34) 739
Jolibois, F.      360(85) 410(85) 426
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå