Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124
Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124

Àâòîðû: Michael Baer, Gert D.Billing

Àííîòàöèÿ:

Edited by Nobel Prize-winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest.

This stand-alone, special topics volume, edited by Gert D. Billing of the University of Copenhagen and Michael Baer of the Soreq Nuclear Research Center in Yavne, Israel, reports recent advances on the role of degenerate states in chemistry.

Volume 124 collects innovative papers on "Complex States of Simple Molecular Systems," "Electron Nuclear Dynamics," "Conical Intersections and the Spin-Orbit Interaction," and many more related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 824

Äîáàâëåíà â êàòàëîã: 05.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$C_2H$ radical, non-adiabatic coupling, (1, 2) and (2, 3) conical intersections, two-state molecular system      109—112
$C_2H$ radical, Renner — Teller effect, multiple-state systems      623
$HD_2$ molecule, non-adiabatic coupling, two-state molecular system      107—109
$HD_2$ molecule, permutational symmetry, isotopomers      713—717
$HD_2$ molecule, permutational symmetry, potential energy surfaces      692—694
$H_3$ molecule, permutational symmetry, ${}^1H_3$ isotopomers      713—717
$H_3$ molecule, permutational symmetry, potential energy surfaces      692—694
$Na_2F_2$ cluster, direct molecular dynamics, semiempirical studies      415
$\Delta$ electronic states, Renner — Teller effect, tetraatomic molecules, perturbative handling      647—653
$\Delta$ electronic states, Renner — Teller effect, tetraatomic molecules, theoretical background      625—626
$\Delta$ electronic states, triatomic molecules      600
$\Delta$ electronic states, triatomic molecules, minimal models      618
$\Delta$ electronic states, triatomic molecules, vibronic/spin-orbit coupling      604—605
$\pi$ bonds, phase-change rule      452—453
$\pi$ bonds, phase-change rule, isomerization reactions      456
$\pi$ bonds, phase-change rule, large four-electron systems      458—459
$\Pi$ electronic states, permutational symmetry, electronic wave function      680—682
$\Pi$ electronic states, Renner — Teller effect, tetraatomic molecules, ABBA models      631—633
$\Pi$ electronic states, Renner — Teller effect, tetraatomic molecules, Hamiltonian equations      626—628
$\Pi$ electronic states, Renner — Teller effect, tetraatomic molecules, HCCS radical      633—640
$\Pi$ electronic states, Renner — Teller effect, tetraatomic molecules, perturbative handling      641—646
$\Pi$ electronic states, Renner — Teller effect, tetraatomic molecules, theoretical background      625—626
$\Pi$ electronic states, Renner — Teller effect, triatomic molecules, minimal models      615—618
$\Pi$ electronic states, Renner — Teller effect, triatomic molecules, vibronic coupling, singlet states      599—600
$\Pi$ electronic states, Renner — Teller effect, triatomic molecules, vibronic/spin-orbit coupling      452—453
$\sigma$ bonds, phase-change rule      452
$\sigma$ bonds, phase-change rule, isomerization reactions      456
$\sigma$ bonds, phase-change rule, large four-electron systems      458—459
$\Sigma$ electronic states, permutational symmetry, electronic wave function      680—682
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules      587
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules, minimal models      618
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules, multiple-state models      623
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules, nonlinear molecules      606—610
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules, pragmatic models      620—621
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules, vibronic coupling      598—600
$\Sigma$ electronic states, Renner — Teller effect, triatomic molecules, vibronic/spin-orbit coupling      600—605
$\tau$-matrices, non-adiabatic coupling, analycity properties      124—126
$\tau$-matrices, non-adiabatic coupling, curl condition, pseudomagnetic field      95—96
$\tau$-matrices, non-adiabatic coupling, extended Born — Oppenheimer equations      169—171
$\tau$-matrices, non-adiabatic coupling, extended Born — Oppenheimer equations, three-state molecular system      174—175
$\tau$-matrices, non-adiabatic coupling, minimal diabatic potential matrix, noninteracting conical intersections      86—89
$\tau$-matrices, non-adiabatic coupling, quantization extensions      62—63
$\tau$-matrices, non-adiabatic coupling, single/multivaluedness      126—132
$\tau$-matrices, non-adiabatic coupling, three-state molecular system      102—103
$\tau$-matrices, non-adiabatic coupling, three-state molecular system, numerical studies      134—137
$\tau$-matrices, non-adiabatic coupling, three-state molecular system, strongly coupled (2, 3) and (3, 4) conical intersections, “real” three-state systems      115—117
$\tau$-matrices, non-adiabatic coupling, two-state molecular system, $H_3$ molecule      105—109
$\tau$-matrices, non-adiabatic coupling, two-state molecular system, single conical intersection solution      98—101
$\tau$-matrices, non-adiabatic coupling, vector potential, Yang — Mills field      93—97
${}^1H_2$ molecule, permutational symmetry, rotational wave function      686—687
${}^1H_3$ molecule, permutational symmetry, isotopomers      713—717
${}^2S$ systems, permutational symmetry, ${}^1H_3$ isotopomers      713—717
${}^2S$ systems, permutational symmetry, alkali metal trimers      712—713
${}^2S$ systems, permutational symmetry, dynamic Jahn — Teller and geometric phase effects      698—711
${}^2S$ systems, permutational symmetry, electron/nuclear spin effects      711—712
${}^2S$ systems, permutational symmetry, nonadiabatic coupling effects      711
${}^2S$ systems, permutational symmetry, potential energy surfaces      692—694
${}^2S$ systems, permutational symmetry, static Jahn — Teller effect      694—698
1, 4—Cyclohexadiene (CHDN) molecule, conical intersection location      490—491
1, 4—Cyclohexadiene (CHDN) molecule, phase-change rule, helicopter reactions      459—460
1, 4—Cyclohexadiene (CHDN) molecule, phase-change rule, large four-electron systems      458—459
1, 4—Cyclohexadiene (CHDN) molecule, phase-change rule, photochemistry, quantitative analysis      482— 487
1, 4—Cyclohexadiene (CHDN) molecule, phase-change rule, quantitative photochemical analysis      483—487
Ab initio calculations, non-adiabatic coupling      41—44
Ab initio calculations, non-adiabatic coupling, three-state molecular system      102—103
Ab initio calculations, non-adiabatic coupling, two-state molecular system, $H_3$ molecule      104—109
Ab initio calculations, non-adiabatic coupling, two-state molecular system, single conical intersection solution      97—101
Ab initio calculations, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      634—640
Ab initio calculations, Renner — Teller effect, tetraatomic molecules, theoretical background      625—626
Ab initio calculations, Renner — Teller effect, triatomic molecules      611—615
Ab initio calculations, Renner — Teller effect, triatomic molecules, pragmatic models      620—621
Ab initio multiple spawning (AIMS), conical intersection location      491—492
Ab initio multiple spawning (AIMS), direct molecular dynamics      411—414
Ab initio multiple spawning (AIMS), direct molecular dynamics, theoretical background      360—361
ABA symmetry, Renner — Teller effect, triatomic molecules      618—621
ABBA molecules, Renner — Teller effect, tetraatomic molecules, $\Delta$ electronic states, perturbative handling      647—653
ABBA molecules, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      631—633
ABBA molecules, Renner — Teller effect, tetraatomic molecules, Hamiltonian equations      627—628
ABBA molecules, Renner — Teller effect, tetraatomic molecules, perturbative handling      641—646
ABBA molecules, Renner — Teller effect, tetraatomic molecules, vibronic coupling      630—631
ABC bond angle, Renner — Teller effect, triatomic molecules      611—615
ABCD bond angle, Renner — Teller effect, tetraatomic molecules      626—628
ABCD bond angle, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      634—640
ABCD bond angle, Renner — Teller effect, tetraatomic molecules, perturbative handling      641—646
ABCD bond angle, Renner — Teller effect, tetraatomic molecules, vibronic coupling      630—631
Abelian theory, molecular systems, Yang — Mills fields, nuclear Lagrangean      250
Abelian theory, molecular systems, Yang — Mills fields, pure vs. tensorial gauge fields      250—253
Abramson, E.W.      450(53) 494(53) 501
Abrol, R.      41(4 46) 138 140 285(55) 300—301(55) 303(84) 304(55) 308(84) 321—322 715—716(81) 740
Adamo, C.      363(95) 426
Adelman, D.E.      145(50—51) 195 286(57—59) 321
Adhikari, S.      41(25) 122(25 133—134) 139 142 146(53—56 60) 147(65—66) 168(65) 150(60) 152(60) 157(53—54) 162(54—55) 163(55) 164(54) 168(88) 184(60) 195—196 211(189—191 193—194) 234(193) 248(189—191 193—194) 278 399(217) 430 487—488(102) 503 506(3) 555
Adiabatic approximation, geometric phase theory, conical intersection eigenstates      8—11
Adiabatic approximation, geometric phase theory, eigenvector evolution      11—17
Adiabatic approximation, non-adiabatic coupling, theoretical background      41—44
Adiabatic approximation, permutational symmetry, total molecular wave function      662—668
Adiabatic molecular dynamics      362—381
Adiabatic molecular dynamics, Gaussian wavepacket propagation      377—381
Adiabatic molecular dynamics, initial condition selection      373—377
Adiabatic molecular dynamics, nuclear Schroedinger equation      363—373
Adiabatic molecular dynamics, vibronic coupling      382—384
Adiabatic potentials, non-adiabatic coupling, minimal diabatic potential matrix      83—89
Adiabatic representation, electronic states, Born — Huang expansion      286—289
Adiabatic representation, electronic states, first-derivative coupling matrix      290—291
Adiabatic representation, electronic states, nuclear motion Schroedinger equation      289—290
Adiabatic representation, electronic states, second-derivative coupling matrix      291—292
Adiabatic representation, permutational symmetry, conical intersections, invariant operators      735—737
Adiabatic representation, permutational symmetry, conical intersections, Jahn — Teller theorem      733—735
Adiabatic systems, direct molecular dynamics      362—381
Adiabatic systems, direct molecular dynamics, Gaussian wavepacket propagation      377—381
Adiabatic systems, direct molecular dynamics, initial condition selection      373—377
Adiabatic systems, direct molecular dynamics, nuclear Schroedinger equation      363—373
Adiabatic-to-diabatic transformation (ADT)      see also "Non-adiabatic coupling"
Adiabatic-to-diabatic transformation (ADT), canonical intersection, historical background      147—148
Adiabatic-to-diabatic transformation (ADT), derivation      47—48
Adiabatic-to-diabatic transformation (ADT), electronic states, diabatic nuclear motion Schroedinger equation      293—295
Adiabatic-to-diabatic transformation (ADT), electronic states, diabatization matrix      295—300
Adiabatic-to-diabatic transformation (ADT), electronic states, electronically diabatic representation      292—293
Adiabatic-to-diabatic transformation (ADT), electronic states, two-state application      300—309
Adiabatic-to-diabatic transformation (ADT), historical background      40—44
Adiabatic-to-diabatic transformation (ADT), molecular systems, multidegenerate nonlinear coupling      241—242
Adiabatic-to-diabatic transformation (ADT), molecular systems, Yang — Mills fields, curl conditions      252—253
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, analyticity      123—126
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, extended Born — Oppenheimer equations      171—173
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, Jahn — Teller systems, Longuet-Higgins phase      119—122
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, line integral approach      50—57
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, line integral approach, quasidiabatic framework      53—57
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, line integral approach, single-valued diabatic potentials and topological matrix      50—53
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, minimal diabatic potential matrix      83—89
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, orthogonality      122—123
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, quantization      63—67
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, single/multivaluedness      126—132
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, solution conditions      48—50
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, two-state molecular system, $C_2H$-molecule: (1, 2) and (2, 3) conical intersections      111—112
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, two-state molecular system, $H_3$ molecule      104—109
Adiabatic-to-diabatic transformation (ADT), non-adiabatic coupling, Wigner rotation matrix and      89—92
Adiabatic-to-diabatic transformation (ADT), Yang — Mills field      203—205
Aguilar, A.      82(107) 141 640—641(169) 658
Aharonov — Anandan phase, properties      209
Aharonov — Bohm effect      see "Geometric phase effect"
Aharonov, Y.      3(12) 4(18) 16(18) 27(12 18) 28(18) 37 42(62—63) 95(113) 122(63) 140—141 200(8 10) 204(81 95) 208(145—146) 209(8 10) 210(10 177) 211(95) 213(232) 215(241) 218(241) 232(264) 273 275 277—280 285(27) 320 487(104) 503
Ahn, J.      200(19) 204(19) 273
Al-Laham, M.A.      363(95) 426
Alder, R.W.      458(59) 501
Alexander, M.H.      285(41) 321
Alijah, A.      63(85) 67(92) 134—135(85) 122(133—134) 141—142 147(63 65—66) 148(65) 196 211(194) 242(298) 248(194) 278 281 297(73) 322 506(3) 555 619(81—85) 655
Alkali metal trimers, permutational symmetry      712—713
Allen, M.      371(121) 427
Allinger, N.      359(58) 406(58) 425
Allison, T.      398(211) 403(211 224) 430
Allyl radical, loop construction, phase-change rules      455
Almloef, J.      41(6) 138
Alternate spin functions (ASF), phase inverting reactions      498—499
Ammonia molecule, conical intersections, two-state chemical reactions      436—438
Ammonia molecule, loop construction, photolysis      480—481
Ammonia molecule, phase-change rule, chiral systems      456—458
Amos, R.D.      41(6) 138
Amplitude analysis, electron nuclear dynamics (END), molecular systems      339—342
Amplitude analysis, molecular systems      214—233
Amplitude analysis, molecular systems, Cauchy-integral method      219—220
Amplitude analysis, molecular systems, cyclic wave functions      224—228
Amplitude analysis, molecular systems, modulus and phase      214—215
Amplitude analysis, molecular systems, modulus-phase relations      217—218
Amplitude analysis, molecular systems, near-adiabatic limit      220—224
Amplitude analysis, molecular systems, reciprocal relations      215—217 232—233
Amplitude analysis, molecular systems, wave packets      228—232
Analytic theory, molecular systems, component amplitudes      214—233
Analytic theory, molecular systems, component amplitudes, Cauchy-integral method      219—220
Analytic theory, molecular systems, component amplitudes, cyclic wave functions      224—228
Analytic theory, molecular systems, component amplitudes, modulus and phase      214—215
Analytic theory, molecular systems, component amplitudes, modulus-phase relations      217—218
Analytic theory, molecular systems, component amplitudes, near-adiabatic limit      220—224
Analytic theory, molecular systems, component amplitudes, reciprocal relations      215—217 232—233
Analytic theory, molecular systems, component amplitudes, wave packets      228—232
Analytic theory, non-adiabatic coupling      123—126
Analytic theory, quantum theory      199—205
Anandan, J.      42(62) 140 200(10) 209(9 165) 210(10) 273 277
Anchor, conical intersection, molecules and independent quantum species      439—441
Anchor, conical intersection, properties      439
Anchor, conical intersection, two-state chemical reactions      437—438
Anchor, loop construction, butadiene molecules      474—482
Anchor, loop construction, photochemical reactions      453—460
Anchor, loop construction, quantitative photochemical analysis      483—487
Anchor, phase-change rule, cyclopentadienyl radical (CPDR)      466—467
Ancilotti, F.      215(239) 218(239) 279
Anderoni, W.J.      134—135(135) 137(135) 142
Anderson, L.S.      625(146) 639(146) 657
Andersson, K.      358(39—40) 363(97) 424—425 427
Andres, J.L.      363(95) 426
Angular momentum, Gaussian matrix elements, crude Born — Oppenheimer approximation      517—542
Angular momentum, Gaussian matrix elements, crude Born — Oppenheimer approximation, Coulomb interaction      527—542
Angular momentum, Gaussian matrix elements, crude Born — Oppenheimer approximation, Coulomb interaction, first-order derivatives      529—535
Angular momentum, Gaussian matrix elements, crude Born — Oppenheimer approximation, Coulomb interaction, second-order derivatives      535—542
Angular momentum, Gaussian matrix elements, normalization factor      517
Angular momentum, Gaussian matrix elements, nuclei interaction terms      519—527
Angular momentum, Gaussian matrix elements, overlap integrals      518—519
Angular momentum, permutational symmetry, group theoretical properties      670—674
Angular momentum, Renner — Teller effect, triatomic molecules      591—598
Antara path products, loop construction, butene compounds      478—479
Antiaromatic transition state (AATS), phase-change rule, permutational mechanism      451—453
Antiaromatic transition state (AATS), quantitative photochemical analysis      483—487
Antilinear operators, permutational symmetry      721—723
Antisymmetric matrix, non-adiabatic coupling, vector potential, Yang — Mills field      94—95
Antoniou, I.      213(221) 279
Aoiz, F.J.      162(79—80 84—87) 196
Aoyagi, M.      82(103) 118(103) 141
Applegate, B.E.      464(73) 465(73 76) 502
Arfken, G.      14(27) 37
Arnold, J.      365(111) 427
Arnold, V.I.      17(28) 37
Aromatic transition state (ATS), phase-change rule, permutational mechanism      451—453
Aromaticity, phase-change rule, chemical reaction      446—453
Aromaticity, phase-change rule, chemical reaction, pericyclic reactions      447—450
Aromaticity, phase-change rule, chemical reaction, pi-bond reactions      452—453
Aromaticity, phase-change rule, chemical reaction, sigma bond reactions      452
Asakura, T.      208(148) 277
Ashfold, M.N.R.      625(146) 639(146) 657
Asymptotic analysis, electronic states, triatomic quantum reaction dynamics      317—318
Atchity, G.J.      285(48) 301(48) 321 388(189) 410(189) 429 438(33) 487(33 107) 488(107) 500 503 576(35) 581
Atkins, P.      396(198) 429
Au, C.K.      213(232) 279
Averbukh, I.SH.      200(15—16 18) 204(16 90) 211(16 90) 212(15 199—200) 273 278
Averin, D.V.      200(22) 273
Avery, J.      97(115) 103(115) 119(115) 141 202(57) 274
Avron, J.E.      211(188) 248(188) 278
Ayala, P.Y.      363(95) 426
Azulene molecule, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique      408—410
Azumi, T.      506(13) 555
Bacis, R.      624(111) 656
Badurek, G.      207—208(124) 210(170) 276 278
Baede, A.      381(160) 428
Baer — Englmann (BEB) approximation, permutational symmetry, GBO approximation/geometric phase, Hilbert space model      720—721
Baer, M.      10(22) 13(25—26) 28(25—26 36—37 39) 37 41(7—13 23—24 26—28 34—36 54—56) 42(8—12 34—36 55—57 72—75) 43(8—12 34—36 72—75) 46(8—10) 47(9) 49(36) 50(57) 51(57 80) 53(35 36b) 54(81) 59(80) 63(34 36 84—85) 66—67(9) 68(26) 70(81) 71(12 26 74) 72(7—8 80) 73(9—12) 80(24) 82(34—36 54 94—97 104) 86(23) 88(80) 93(8 34) 94(73—74 110) 95(36 54 110 112) 97(72 114—115) 99(12) 101(114) 102(12 104) 103(115) 104(11—12 35—36 72—74 116—117) 105(13) 106(120) 107(11) 109(11—12 73) 111(72—73 104) 112(116) 114(116) 115(7 81) 116(73) 117(12 26 74) 118(8 13 54 72—74 94—97 104 126) 119(115) 122(23 26 55—56 133—134) 134(36 85) 135(85) 139—142 144(18—23) 145(42) 146(57—59) 147(19—20 62—66) 148(65) 150(59) 157(59) 158(68) 194—196 200(29—30 32 36—38) 202(55—57 59—60) 203(36 72—73) 204(83) 205(72) 206(30 32 108—109) 210(30 32) 211(193—194) 222(29) 229(29) 234(193 281—282) 241(72) 242(29—30 32 56 108 282 290—293 298—30—1) 248(36 59 193—194 300—301) 252—253(72) 258—259(72) 262(72) 274—276 278 281 285(28 47 49—50 52) 289(62) 296(72—73) 297(47 74—75) 301(47 49—50 52 74) 320—322 345(48) 353 359(53—54 56—57) 365(114—115) 383(54) 385(53—54) 419(54) 425 427 488(112) 489(113) 503 506(2—3) 555 660(5 25) 668(5 53) 693(5) 713(5 53) 716(5 85—86) 719(5 53) 720(5 25 53) 721(5 25) 738—740
Baer, R.      28(39) 37 41(23) 86(23) 122(23) 139 146(58) 150(58) 157(58) 195 242(300—301) 248(300—301) 281
Baggott, J.      479—480(90) 502
Bai, Z.-M.      210(175) 278
Balakrishnan, N.      357(18) 364(18) 424
Baldridge, K.      363(96) 426
Balint-Kurti, G.G.      357(16) 364(16) 424
Balisteri, M.L.M.      206(122) 276
Ballhausen, C.      418(250) 431 506(8) 555
Balzani, V.      481—482(95) 502
Banares, L.      167(80 84—87) 196
Band theory, geometric phase theory, Floquet theory principles      35—36
Band theory, geometric phase theory, single-surface nuclear dynamics, vibronic multiplet ordering      24—25
Banks, T.      212(218) 279
Barckholtz, T.      381(166—167) 428 464(73) 465(73) 502
Barnes, M.P.      624(111) 656
Barnett, R.      360(69) 425
Barnett, S.M.      208(138 141) 277
Baron, M.      210(170) 278
Barone, V.      363(95) 426
Barrow, Dixon, and Duxbury (BDD) method, Renner — Teller effect, tetraatomic molecules, Hamiltonian equations      626—628
Barrow, Dixon, and Duxbury (BDD) method, Renner — Teller effect, triatomic molecules      618—621
Barrow, R.      618(74) 655
Bartholomae, R.      622(89) 655
Baseia, B.      206(110) 276
Basis functions, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements      517—542
Basis functions, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives      527—542
Basis functions, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, first-order derivatives      529—535
Basis functions, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, Coulomb potential derivatives, second-order derivatives      535—542
Basis functions, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, normalization factor      517
Basis functions, crude Born — Oppenheimer approximation, angular-momentum-adopted Gaussian matrix elements, overlap integrals      518—519
Basis functions, crude Born — Oppenheimer approximation, theoretical background      507
Basis functions, direct molecular dynamics, nuclear motion Schroedinger equation      363—373
Basis functions, Renner — Teller effect, tetraatomic molecules      629—631
Basis functions, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      629—631640
Basis functions, Renner — Teller effect, tetraatomic molecules, perturbative handling      643—646
Basis functions, Renner — Teller effect, triatomic molecules      592—598
Basis functions, Renner — Teller effect, triatomic molecules, linear models      616—618
Bastida, A.      661(35) 739
Bates, C.A.      233(276) 280
Bates, D.R.      203(64) 254(64) 275 284(13—14) 320
Bearpark, M.      358(43) 359(50 64) 360(79—85) 406(64) 407(79) 408(80—82) 409(83—84) 410(85) 425—426 489(115) 503 558(6) 580
Beaton, S.A.      604(30—31) 654
Beck, C.      285(38) 321
Beck, M.H.      357(20) 364(20) 423(20) 424
Beer, M.      408(238) 430
Beer-Lambert law, direct molecular dynamics, adiabatic systems, initial conditions      373—377
Behroozi, C.      249(315) 282
Bell inequalities, phase factors      208
Ben-Nun, M.      326(16) 352 358(35—36) 361(88) 399(35—36 218—219) 400(220) 401(36 218) 402(35—36 221—222) 403(222) 411(36 218 243—244) 414(88 221 247—248) 424 430—431 434(10) 472(10) 491(10 123) 500 503
Ben-Reuven, E.      4(18) 16(18) 27—28(18) 37 42(63) 122(63) 140 204(81) 275
Benchmark handling, Renner — Teller effect, triatomic molecules      621—623
Bender, C.F.      609(36) 654
Bending vibrations, Renner — Teller effect, nonlinear molecules      606—610
Bending vibrations, Renner — Teller effect, tetraatomic molecules, $\Pi$ electronic states      636—640
Bending vibrations, Renner — Teller effect, tetraatomic molecules, theoretical background      625—626
Bending vibrations, Renner — Teller effect, tetraatomic molecules, vibronic coupling      631
Bending vibrations, triatomic molecules      587—598 595—598
Bending vibrations, triatomic molecules, Hamiltonian selection      612—615
Bending vibrations, triatomic molecules, linear models      616—618
Bending vibrations, triatomic molecules, vibronic coupling, singlet states      599—600
Benzene molecule, conical intersections, two-state chemical reactions      436—438
Benzene molecule, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique      407—410
Benzene molecule, loop construction, isomerization reactions      479—481
Benzene molecule, phase-change rule, pericyclic reactions      448—450
Benzvalene, loop construction, isomerization      479—481
Berens, P.      374(135) 428
Beretta, G.P.      212(219) 279
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå