|
|
Результат поиска |
Поиск книг, содержащих: Pull-back
Книга | Страницы для поиска | Weintraub S. — Differential Forms. A complement to vector calculus | | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 64 | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 670 | Lang S. — Algebra | 61 | Olver P.J. — Equivalence, Invariants and Symmetry | 26, 28, 68, 122, 291 | Majid S. — Foundations of Quantum Group Theory | 17, 222, 471, 486 | Marmo G., Skagerstam B.S., Stern A. — Classical topology and quantum states | 32, 64 | Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes | 19, 91 | Miyanishi M. — Algebraic Geometry | 127 | Torretti R. — Relativity and Geometry | 316 note 12 | Hilton P.J., Stammbach U. — A course in homological algebra | 60 | Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 185 | Higson N., Roe J. — Analytic K-Homology | 40 | Huybrechts D. — Fourier-Mukai Transforms in Algebraic Geometry | 6, 45, 80, 86 | Gallot S., Hulin D. — Riemannian Geometry | 1.106 ff., 1.120 ff. | Brown K.S. — Cohomology of Groups | 94 | Berger M., Pansu P., Berry J.-P. — Problems in Geometry | 13.A | Bleecker D. — Gauge Theory and Variational Principles | 11, 127 | Stewart J. — Advanced general relativity | 16 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 62 | Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 51 | Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 128, 233 | Granas A., Dugundji J. — Fixed Point Theory | 534, 618 | Anderson G.A., Granas A. — Fixed Point Theory | 534, 618 | Woodhouse N.M.J. — Geometric quantization | 260 | Lee J.M. — Differential and physical geometry | 165 | Lang S. — Algebra | 61 | Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 206 | Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 41 | Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 19 | van der Meer J.-C. — The Hamiltonian Hopf Bifurcation | 6 | Vafa C., Zaslow E. — Mirror symmetry | 10 | Zeidler E. — Oxford User's Guide to Mathematics | 485 | Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 48, 72, 82, 84, 85, 315 | Maclane S. — Homology | 90, 143 | Brown K. — Cohomology of Groups (Graduate Texts in Mathematics) | 94 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 9, 33, 35 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 62 | Miron R. — The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics (Fundamental Theories of Physics) | 56 |
|
|