|
|
Результат поиска |
Поиск книг, содержащих: Sierpinski gasket
Книга | Страницы для поиска | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | xvi, 120, 236 | Arrowsmith D.K., Place C.M. — Dynamical systems. Differential equations, maps and chaotic behaviour | 283, 285 | Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 88 | Gromov M. — Metric Structures for Riemannian and Non-Riemannian Spaces | B.2.11—B.2.12 | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 356 | Stauffer D., Aharony A. — Introduction To Percolation Theory | 105 | Higson N., Roe J. — Analytic K-Homology | 180 | Hensley D. — Continued Fractions | 100 | Falconer K.J. — Techniques in Fractal Geometry | see Sierpinski triangle | Stauffer D., Aharony A. — Introduction to percolation theory | 105 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 2, 17, 388 | Higham N.J. — Accuracy and Stability of Numerical Algorithms | 521 | Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 359 | Kenzel W., Reents G., Clajus M. — Physics by Computer | 104 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | see “Sierpinski triangle” | Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 210 | Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 11 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 469 | Higham D.J., Higham N.J. — MATLAB guide | 16—19 | Addison P.S. — Fractals and chaos | 4, 23 | Posamentier A.S. — The Fabulous Fibonacci Numbers | 312—313 |
|
|