|
|
Результат поиска |
Поиск книг, содержащих: Periodic orbit
Книга | Страницы для поиска | Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 316 | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 228, 232 | Arrowsmith D.K., Place C.M. — Dynamical systems. Differential equations, maps and chaotic behaviour | 136 | Milnor J. — Dynamics in One Complex Variable | 3-2, $\S10$, $\S11$ | Nayfeh A.H. — Perturbation Methods | 99 | Brin M., Stuck G. — Introdution to dynamical system | 2 | Lynch S. — Dynamical Systems with Applications Using Mathematica® | 207 | Hall G.R., Lee — Continuous dynamical systems | 63 | Afraimovich V., Ugalde E. — Fractal Dimensions for Poincare Recurrences | 15 | Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 16 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 191, 192 | Weiss U. — Quantum Dissapative Systems | 212, 213, 226 | Holden A.V. — Chaos | 122, 123, 128, 131, 275 | Hale J.K., Kocak H. — Dynamics and Bifurcations | 179, 365—388 (see also “Limit cycle”) | Holden A.V. — Chaos | 122, 123, 128, 131, 275 | Preston C. — Iterates of Maps on an Interval | 21 | Hilborn R.C. — Chaos and nonlinear dynamics | see also "Limit cycle" | Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 96 | Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 143, 145, 146, 149, 150, 152—154, 156, 159, 160, 163, 164, 166, 167, 172—174, 204—206, 218 | Rockmore D. — Stalking the Riemann Hypothesis | 191, 192 | Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics | 16, 35, 133 (Fig. 5,24b), 199 (Fig, 7.17) | Butcher J. — Numerical Methods for Ordinary Differential Equations | 18 | Afraimovich V.S., Hsu S.-B. — Lectures on Chaotic Dynamical Systems | 4, 156, 165, 189 | Chepyzhov V.V., Vishik M.I. — Attractors for equations of mathematical physics | 20 | Richter K. — Semiclassical theory of mesoscopic quantum systems | 27, 53, 59, 111 | Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 15—16 | Gallavotti G. — Statistical Mechanics | 48, 300 | Zhang B. G., Yong Z. — Qualitative analysis of delay partial difference equations | 331, 347 | Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 6, 28, 78 | Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 201, 514, 516 | Henry D. — Geometric Theory of Semilinear Parabolic Equations | 83 | Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 13, 23—24 | Falconer K. — Fractal geometry: mathematical foundations and applications | 228, 232 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 41, 77 |
|
|