|
|
Результат поиска |
Поиск книг, содержащих: Moment problem
Книга | Страницы для поиска | Grinstead C.M., Snell J.L. — Introduction to Probability | 368, 398 | Devroye L. — Generation of non-uniform random variates | 682 | Wall H.S. — Analytic Theory of Continued Fractions | 258 | Rao R.C. — Linear Statistical Inference and Its Applications | 106 | Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers | 410, 414—415p | Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 635, 636, 637, 638, 639, 640, 641 | Koosis P. — The Logarithmic Integral (Vol. 1) | see under “Riesz” | Akhiezer N.I., Glazman I.M. — Theory of Linear Operators in Hilbert Space | 1 | Lorentzen L., Waadeland — Continued fractions and applications | 353 | Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 70 | Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 146—153, 219 | Rachev S.T. — Probability Metrics and the Stability of Stochastic Models | 185, 191 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1072, 1117 | Streater R.F. (Ed) — Mathematics of Contemporary Physics | 25 | Bowman K.O., Shenton L.R. — Continued Fractions in Statistical Applications | 31, 39, 60, 161, 172 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1072, 1117 | Dunkl Ch.F., Ramirez D.E. — Representations of Commutative Semitopological Semigroups | 42 | Kakosyan A.V., Klebanov L.B., Melamed J.A. — Characterization of Distributions by the Method of Intensively Monotone Operators | 19 | Kuhn D. — Generalized Bounds For Convex Multistage Stochastic Programs | 53 | Korner T.W. — Fourier Analysis | 21—23, 385 | Dupacova J., Hurt J., Stepan J. — Stochastic Modeling in Economics and Finance | 175 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1072, 1117 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 7.17, 14.0, 14.1, S.14.20, 15.12 | Papadimitriou C.H., Steiglitz K. — Combinatorial Optimization: Algorithms and Complexity | 16 | Young R.M. — An Introduction to Nonharmonic Fourier Series | 146—153, 219 | Erdelyi A. — Higher Transcendental Functions, Vol. 2 | 163 | Baker G.A., Gammel J.L. — The Padé Approximant in Theoretical Physics | 15, 100, 185—186, 194, 198—199 | Prestel A., Delzell C.N. — Positive Polynomials: From Hilbert's 17th Problem to Real Algebra (Springer Monographs in Mathematics) | 152-157, 159 | Wimp J. — Computation with recurrence relations | 53 | Baker G.A. — Essentials of Padé Approximants in Theoretical Physics | 85 | Durrett R. — Probability: Theory and Examples | 107 | Rao M.M., Swift R.J. — Probability Theory With Applications | 234 | Korner T.W. — Fourier Analysis | 21—23, 385 | Pasquale P. — Linear spaces of analytic functions | 148—150 | Grimmett G., Welsh D. — Probability: An Introduction | 105 | Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 72 | Devroye L. — Non-Uniform Random Variate Generation | 682 | Pier J.-P. — Mathematical Analysis during the 20th Century | 155 | Williams D. — Probability with Martingales | (E18.6) | Kline M. — Mathematical thought from ancient to modern times | 1072, 1117 | Brezinski C. — History of Continued Fractions and Padé Approximants | 230, 289 |
|
|