|
|
Результат поиска |
Поиск книг, содержащих: Category, abelian
Книга | Страницы для поиска | Bass H. — Algebraic K-theory | 20 | MacLane S. — Categories for the working mathematician | 194 | Majid S. — Foundations of Quantum Group Theory | 428, 438 | Gelfand S.I., Manin Yu.I. — Methods of Homological Algebra | 113 | Pareigis B. — Categories and functors | 158, 163, 164 | Voisin C. — Hodge theory and complex algebraic geometry 1 | 95 | Grillet P.A. — Abstract Algebra | 602, 602—604 | Le Bruyn L. — Noncommutative geometry | 84 | Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 87 | Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 185—186 | Huybrechts D. — Fourier-Mukai Transforms in Algebraic Geometry | 4 | Chari V., Pressley A. — A Guide to Quantum Groups | 136—137, 307 | Ito K. — Encyclopedic Dictionary of Mathematics | 52.N | Borceux F. — Handbook of Categorical Algebra 3 | II.13, II.109 | Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory | IV.203 | Jensen C.U., Lenzing H. — Model Theoretic Algebra with particular emphasis on Fields, Rings, Modules | 381 | Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 87 | Rudakov A.N. — Helices and vector bundles: seminaire Rudakov | 75, 81—82 | Bass H. — Algebraic K-theory | 20 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 185—186 |
|
|