Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$Ag^{2}$, ZEKE spectroscopy compared with photoionization efficiency      610—611
$CD_{3}I$, photodissociation      730
$CF_{2}HCl$, strongly coupled CH stretching and bending vibrations, time-dependent entropy      379—380
$CF_{3}$, symmetric stretching      451 453
$CH_{3}$ + CO channel      737—739
$CH_{3}I$, photodissociation      742
$CS_{2}$, dispersed fluorescence spectrum      597—598
$CS_{2}$, spectral decomposition of symmetric-stretch wavepackets      598—599
$CS_{2}$, vibrational motion      526—528
$C^{+}-OH$ system, adiabatic channel potential curves      843
$C_{2}HD$, vibrational motion      529—531
$D + CD_{2}CO$ channel      739—740
$FH_{2}$, Smale horseshoes      554
$FH_{2}$, tangent bifurcation      550—552
$HCl_{2}$, Smale horseshoes      554
$HCl_{2}$, tangent bifurcation      550—552
$HgI_{2}$, antipitchfork bifurcation      561—563
$HgI_{2}$, higher order perturbation theory      596
$HgI_{2}$, periodic orbits      586
$HgI_{2}$, Smale horseshoe      563—565
$HgI_{2}$, supercritical antipitchfork bifurcation      546
$HgI_{2}$, ultrashort-lived resonances      561—565
$H_{2}$ + OH, cumulative reaction probability      859 861
$H_{3}$, periodic orbits      600—601
$H_{3}$, subcritical antipitchfork bifurcation      548—550
$H_{3}$, ultrashort-lived resonances      571—572
$LiF-F_{2}$ needle tip      880 882—883
$Na^{+}$ fragment, TOF spectra, laser pulse duration effect      64—65
$Na_{2}^{+}$, frequency-filtered pump-probe signal      57—58
$Na_{2}^{+}$, transient signals      52—54
$Na_{2}^{+}/Na^{+}$ ratio, as function of pulse delay      230
$Na_{2}^{+}/Na^{+}$, signal ratio as function of pump-probe delay      53 55—57
$Na_{3}$, B state      132
$Na_{3}$, fragmentation rates of C state vibrational bands      123—125
$Na_{3}$, pseudorotating      121—122
$Na_{3}$, pseudorotating, B state      139
$Na_{3}$, wavepacket propagation during picosecond pump-probe excitation      120—121
$Na_{3}(B)$, intramolecular vibrational density redistribution      134
$NO_{2}$      528—529
$NO_{2}$, vibrational motion      528—529
$\mathcal{Q}$-functions, phonon states      382—383
$^{39, 39}K_{2}$ isotopomer      105—106
$^{39, 41}K_{2}$ isotopomer      105—106
7-Azaindole, DNA base-pair model      35—36
Ab initio calculated spectra, compared with ZEKE spectroscopy      617—618
Ab initio simulations      202—203
Abbouti Temsamani, M.      465(7) 488(7) 490 521(112 114) 529—530(112) 531(112 123) 532(123) 534—536(114) 579 580 809(1) 810(2) 810
Abramson, E.      493(3) 575
Absorption spectrum, OCS, VUV region      790—791
Acetylene, Darling — Dennison resonance      600
Acetylene, dispersed fluorescence spectra      465—468 602—603
Acetylene, electronic transitions      602
Acetylene, Hamiltonian      533
Acetylene, Lyapunov exponents of periodic orbits      534 536
Acetylene, order in chaotic region      591
Acetylene, Poincare mappings      533—534
Acetylene, polyad model      595
Acetylene, spectral reorganization      591 593
Acetylene, stretching Darling — Dennison interaction      533
Acetylene, vibrational motion      530—536
Acetylene, vibrogram      532
Adams, C.S.      189—190(9) 191
Adams, J.E.      259(64) 262—263(64) 272
Adaptive learning algorithm      252
Adiabatic channel, statistical calculations      819—847
Adiabatic channel, statistical calculations, compared with VTST      835—842
Adiabatic channel, statistical calculations, comparison of SACM and VTST, anisotropic charge-locked permanent-dipole systems      839—841
Adiabatic channel, statistical calculations, comparison of SACM and VTST, general potentials      841—842
Adiabatic channel, statistical calculations, comparison of SACM and VTST, isotropic charge-locked permanent-dipole systems      836—839
Adiabatic channel, statistical calculations, dissociation, specific rate channels      832—835
Adiabatic channel, statistical calculations, number of open channels      832—835
Adiabatic channel, statistical calculations, potential curves      821—824
Adiabatic channel, statistical calculations, SACM applications to more complex reaction systems      842—846
Adiabatic channel, statistical calculations, thermal capture rate constants      823—832
Adiabatic channel, threshold energies      827
Agam, O.      503(38) 518(88) 577—578
Agmon, N.      393—394(19 23) 402
Aharonov, Y.      725
Aicher, P.      626(22) 645
Aker, P.M.      849(1) 849
Akesson, E.      394(27) 399(27) 402
Akimoto, H.      731(7) 733(7) 741
Akiyama, H.      405(5) 406
Akulin, V.M.      659(1) 659
Al'tshuler, B.L.      518(88) 519(92) 578—579
Alagia, M.      86(2) 87
Alber, G.      565(155) 570(155) 581
Albeverio, S.      517(79) 578
Albrecht, A.C.      146(54) 180 433(72) 437(72) 441
Alcaraz, C.      669(22) 697
Alexandrov, I.V.      393(12) 402
Alicki, R.      238(38) 271
Aliev, M.R.      496(17) 498(17) 576
Allen, J.      216(16) 271 328(4) 339(4) 341
Allen, L.      304(12) 312
Alonso Ramirez, D.      512—514(61) 578
Alonso, D.      495(14) 497(14) 500(14 31) 501(14) 504(14) 510(14) 514(14) 521(14) 524(14) 526—527(14) 529(14) 534(14) 541—542(14) 554(114) 558(114) 570(114) 576 785(64) 785
Alt, C.      682(38) 697
Alt, C.E.      626(9 15) 629(9 15) 645
Amat, G.      486(17) 490
Ambartsumian, R.V.      327(3) 339(3) 341 661(2) 662
Ambegeokar, V.      393—394(14) 402
Amirav, A.      419(45) 440
Amplitude imaging      see "Phase and amplitude imaging"
Amrein, A.H.      626(25) 645
Amstrup, B.      48(10) 59(10) 75 218(19) 250(59) 252(59 61) 271—272 317(6) 322 328—329(20) 332(20) 335(20) 339(20) 342
Anandan, J.      725
Anderson, E.M.      412(13) 440
Anderson, S.L.      669(21) 697
Andr, J.C.      279(2) 280
Andreev, A.V.      518(88) 578
Andreev, S.V.      661(5) 662
Andresen, P.      327(3) 339(3) 341 768(61) 785
Anharmonic resonances      466—467 473 476 488
Antonov, V.S.      661(5—7) 662
Apanasevich, P.A.      333(33) 343
Apkarian, V.A.      146(21) 179 373(7) 374
Arcuni, P.W.      705(19—20) 708
Argon, autoionizing Rydberg states, matrix diagonalization approach      691—692
Argon, autoionizing Rydberg states, MQDT calculations      689—692
Argon, total ion compared with threshold spectrum      614 616
Arimondo, E.      302(10) 305(10) 307(10) 312
Arndt, M.      542(142) 580
Arnett, D.C.      348(20 22) 371
Arnold, C.C.      668(5) 697
Arnold, V.I.      496(19) 501(19) 509(19) 542—543(19) 546—547(19) 551(19) 576
Asano, T.      395(40) 399(40) 403
Asano, Y.      194
Ashfold, M.N.R.      668(9) 697 726(1) 726
Ashijian, P.      373(7) 374
Aspect, A.      302(10) 305(10) 307(10) 312
Assion, A.      55(19) 60(37) 64(43) 76 79(5) 79
Astholz, D.C.      835(22) 847
Astrom, K.J.      319(9) 322
Asymmetric double well, quantum dynamics      150—151
Atabek, O.      48(12—13) 76 703—704(10) 708
Athanassenas, K.      626(27) 646
Atkinson, J.B.      87 89(5)
Aubanel, E.      328(11) 339(11) 342
Aubanel, E.E.      841(28) 847
Augst, S.      374(1) 376(1) 377
Aumayr, F.      626(28) 646
Aurell, E.      501(34) 577
Aurich, R.      518(87) 578
Autocorrelation function      511—512
Autocorrelation function, classical behavior      521
Autocorrelation function, Fourier transform      601—602
Autocorrelation function, polarization operators      365
Autocorrelation signal, gated      348—349 359—362
Autocorrelation signal, ideal      349
Autoionization states      662—663
Avouris, P.      411(8) 439
Backhaus, P.      87 89(4)
Badar, J.S.      394(33) 403
Baer, M.      855(8) 867
Baer, T.      668(3) 697
Baessman, C.      620(25) 623
Bagchi, B.      142(5) 145(5) 172(5) 179 394(25—26 35) 402—403
Baggott, J.E.      327(3) 339(3) 341 373(6) 374
Bagratashvili      451(1) 451
Bahatt, D.      434(83) 437(83) 441 626(18) 628(18) 645—646 702(3) 707
Bahns, J.      308(16) 312
Bain, A.J.      400(49) 403
Baker, A.D.      609(2) 616(2) 623
Baker, C.      609(2) 616(2) 623
Baklshiev, N.G.      394(39) 403
Balakrishnan, N.      201(18) 202 332(29)
Balian, R.      236(34) 271
Balint-Kurti, G.G.      768(61) 785
Balling, P.      65(48) 77
Balucani, N.      86(2) 87
Balykin, V.I.      185(4) 189(4 8 10) 190(10) 191
Banared, L.      399(47) 403
Band, Y.B.      423(57) 425(64) 441 444(1) 444
Bandrauk, A.      302(4) 312
Bandrauk, a.d.      48(11) 65(11) 76 286(3) 292 375—376(2) 377
Banin, U.      196(8—9) 198
Baranger, M.      521(109) 546(144) 579 581
Baranov, L.Y.      434(85) 437(85) 442 626(3) 629(41) 634(3) 643(3a) 645—646
Baranova, B.A.      286(8) 292
Baras, F.      514(64) 578
Barbara, P.F.      394(27 36) 399(27) 402—403
Bardeen, C.J.      60(36) 62(36) 76
Barends, E.J.      573(161) 581
Barrier reactions      22—25
Bartana, A.      196(7—9) 196 198 239(40) 271 308(17) 312
Bartmess, J.E.      731(10) 741
Base pairs, photoinduced tautomerization      85
Basilevsky, M.V.      394(30) 399(30) 402
Basis functions, energy-dependent      755
Baskin, J.S.      40 85 391(1) 400—401(1) 401
Bates, D.R.      820(11) 847
Bauder, A.      416(36) 440
Bauer, C.      748—749(17) 751(17 32—33) 752(32—33) 753—754(32) 756(32) 761(32—33) 763(33) 764—767(32) 768—771(17) 783—784
Baumert, T.      49(14) 52(17—18) 55(19) 60(37) 63(41) 64(43) 65(18 55 49) 67(49) 72(54) 76—77 78(1 3) 79(5) 79 90(2) 90 103(6) 117(14) 131 135(8) 137 196(6) 196 217(17) 229—230(17) 271 328(10) 339—340(10) 341
Bauschlicher, Jr., C.W.      731(11) 741
Bayfield, J.      584(5) 585
Bear, T.      612(8—9) 614(10) 623
Beck, C.      812(4) 812 815(1) 815
Beck, M.      346(15) 371
Beddard, G.      4(8) 43
Beece, D.      405(1—2) 405—406
Beenakker, C.W.J.      519(92)
Beil, A.      377(3) 379
Bekov, G.I.      661—662(8) 662 663(2) 663
Ben-Nun, M.      95—96 153—154(29) 156(29) 157(31) 179—180 195 626(19) 645
Bennemann, K.H.      116(11) 131
Benvenuto, F.      584(6) 585
Benzene, coupling between Rydberg series      446
Benzene, intramolecular coupling      430—431
Benzene, intramolecular dynamics      412—415
Benzene, intramolecular dynamics, intermediate vibrational excess energy      414—415
Benzene, intramolecular dynamics, low excess energy      413—414
Benzene, photoelectron compared with ZEKE spectrum      617—619
Benzene, Rydberg spectrum      435—437
Benzene-$I_{2}$ complex, electron transfer reaction      83
Benzene/iodine bimolecular reaction      31—34
Berendzen, J.      405(4) 406
Berezhkovskii, A.M.      393(18) 394(21) 402
Berghout, H.L.      327(3) 339(3) 341
Bergmann, K.      328(5 9) 339(5 9) 341 423(56) 424(60) 425(60 62—63) 441
Berkovitz, J.      610(3) 623
Berkowitz, M.      393(17) 402
Berne, B.J.      855(7) 867
Bernstein, R.B.      4(11) 39(11) 43 86(1) 87 698 799(2) 806
Berry — Tabor periodic-orbit amplitudes      516
Berry — Tabor trace formula      506—509 573
Berry — Tabor trace formula, $CS_{2}$      527—528
Berry — Tabor trace formula, $C_{2}HD$      530
Berry, M.V.      493(13) 503(38) 505(41) 506—507(13) 511(58) 517(81—82) 518(84) 519(91) 576—579
Berry, R.S.      114—115(9) 131 634(47) 646 657(1) 657
Berry, S.      412(11) 439
Bersohn, R.      203(9) 204 434(78) 441 800(6) 804(15) 806
Beswick, J.A.      637(55) 646 764(54) 785
Bifurcation theory      591
Bifurcation, associated with transition to chaos      545—552
Bifurcation, associated with transition to chaos, area-preserving mappings      545—546
Bifurcation, associated with transition to chaos, periodic-orbit dividing surfaces      545—547
Bifurcation, associated with transition to chaos, subcritical antipitchfork      548—550
Bifurcation, associated with transition to chaos, supercritical antipitchfork      546—548
Bifurcation, associated with transition to chaos, tangent      550—552
Bifurcation, decay modes      631—632
Bimolecular charge-dipole capture process      820
Bimolecular reactions, ground-state dynamics      25—27
Bimolecular scattering      295—300
Bimolecular scattering, general superposition states      299
Bisht, P.B.      394(29) 399(29) 402
Bisseling, R.H.      200(3) 201(10) 201—202 458(3) 458 761(51) 784 812(3) 812
Bittman, J.S.      760(48) 784
Bixon, M.      411(9) 434(88) 437(88) 439 442 537(128) 580 629(39) 642(62) 646 668(13) 681—682(13) 691—692(13) 697
Black, G.      791(8) 796
Blake, N.P.      201(13) 202
Blanc, J.      102—103(1) 131
Blanchet, V.      57(27) 76
Blank, D.A.      732(12) 737(12) 741
Bleher, P.M.      516(75) 518(75) 578
Blodgett-Ford, S.J.      510(51) 577
Bloembergen, N.      40
Blomberg, C.      393(9) 401
Bludsky, O.      416(34) 440
Bluemel, R.      511(57) 528(57) 541(141) 577 580
Boehm, A.      510(52) 577
Boehmer, W.      712(6) 715
Boers, B.      65(47) 77
Boesl, U.      620(25) 623
Bogomolny, E.      503(38) 577
Bohigas, O.      516(76) 517(77) 518(76) 578
Bohr — Sommerfeld orbit, effect of frequency of perturbation of core      625—627
Boller, K.-J.      302(7) 312
Bolte, J.      517(78) 518(87) 578
Boltzmann average, cumulative reaction probability      854
Bonacic-Koutecky, V.      79(9) 80 103(4) 114—115(10) 117(10 13 16—17) 118(13) 122(13) 129—130(25) 131—132 133(4 6—7) 134(4) 135(4 6) 135 136(4) 137 200(6) 201 203(4—5) 203
Bordas, C.      434(81) 441
Bordas, M.C.      538(129) 580
Borkovec, M.      392(3) 401
Born — Oppenheimer approximation      701—702
Born — Oppenheimer approximation, multichannel quantum defect theory      719
Born — Oppenheimer approximation, parameters      651
Born — Oppenheimer approximation, Rydberg series      722
Born — Oppenheimer channels      704
Born — Oppenheimer Hamiltonians      219—220
Born — Oppenheimer potential-energy surface      721
Born — Oppenheimer potential-energy surface, ground/excited      303
Born — Oppenheimer regime      623—624 626—621
Born — Oppenheimer regime, versus inverse Born — Oppenheimer regime      724—725
Born — Oppenheimer theory, coordinate-dependent electronic energies      706
Born, M.      189(10) 191 630(43) 634(43) 646
Borne, T.B.      612(7) 623
Botter, R.      612(9) 623
Bouchene, M.A.      57(27) 76
Bowman — Bitman — Harding potential-energy surface      760—761 763
Bowman, J.M.      760(43—44 48) 784
Bowman, R.M.      41—42 393(10) 400(10) 401 561(151) 566(151) 581 799(2) 806
Bowne, S.F.      405(2) 406
Bownman, R.M.      799(2) 806
Boyer, M.      538(129) 580
Br + $I_2$ exchange reaction, femtosecond dynamics      26—27
Bradforth, S.E.      146(14 18) 152(18) 154(18) 157(18) 158(18 34) 159(18) 179—180
Bramley, M.J.      201(11) 202
Brandao, J.      752(39) 784
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå