√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Gaspard P. (ed.), Burghardt I. (ed.) Ч Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) Ч Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

„итать книгу
бесплатно

—качать книгу с нашего сайта нельз€

ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

јвторы: Gaspard P. (ed.), Burghardt I. (ed.)

јннотаци€:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



язык: en

–убрика: ‘изика/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

√од издани€: 1997

 оличество страниц: 945

ƒобавлена в каталог: 11.07.2014

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
$Ag^{2}$, ZEKE spectroscopy compared with photoionization efficiency      610Ч611
$CD_{3}I$, photodissociation      730
$CF_{2}HCl$, strongly coupled CH stretching and bending vibrations, time-dependent entropy      379Ч380
$CF_{3}$, symmetric stretching      451 453
$CH_{3}$ + CO channel      737Ч739
$CH_{3}I$, photodissociation      742
$CS_{2}$, dispersed fluorescence spectrum      597Ч598
$CS_{2}$, spectral decomposition of symmetric-stretch wavepackets      598Ч599
$CS_{2}$, vibrational motion      526Ч528
$C^{+}-OH$ system, adiabatic channel potential curves      843
$C_{2}HD$, vibrational motion      529Ч531
$D + CD_{2}CO$ channel      739Ч740
$FH_{2}$, Smale horseshoes      554
$FH_{2}$, tangent bifurcation      550Ч552
$HCl_{2}$, Smale horseshoes      554
$HCl_{2}$, tangent bifurcation      550Ч552
$HgI_{2}$, antipitchfork bifurcation      561Ч563
$HgI_{2}$, higher order perturbation theory      596
$HgI_{2}$, periodic orbits      586
$HgI_{2}$, Smale horseshoe      563Ч565
$HgI_{2}$, supercritical antipitchfork bifurcation      546
$HgI_{2}$, ultrashort-lived resonances      561Ч565
$H_{2}$ + OH, cumulative reaction probability      859 861
$H_{3}$, periodic orbits      600Ч601
$H_{3}$, subcritical antipitchfork bifurcation      548Ч550
$H_{3}$, ultrashort-lived resonances      571Ч572
$LiF-F_{2}$ needle tip      880 882Ч883
$Na^{+}$ fragment, TOF spectra, laser pulse duration effect      64Ч65
$Na_{2}^{+}$, frequency-filtered pump-probe signal      57Ч58
$Na_{2}^{+}$, transient signals      52Ч54
$Na_{2}^{+}/Na^{+}$ ratio, as function of pulse delay      230
$Na_{2}^{+}/Na^{+}$, signal ratio as function of pump-probe delay      53 55Ч57
$Na_{3}$, B state      132
$Na_{3}$, fragmentation rates of C state vibrational bands      123Ч125
$Na_{3}$, pseudorotating      121Ч122
$Na_{3}$, pseudorotating, B state      139
$Na_{3}$, wavepacket propagation during picosecond pump-probe excitation      120Ч121
$Na_{3}(B)$, intramolecular vibrational density redistribution      134
$NO_{2}$      528Ч529
$NO_{2}$, vibrational motion      528Ч529
$\mathcal{Q}$-functions, phonon states      382Ч383
$^{39, 39}K_{2}$ isotopomer      105Ч106
$^{39, 41}K_{2}$ isotopomer      105Ч106
7-Azaindole, DNA base-pair model      35Ч36
Ab initio calculated spectra, compared with ZEKE spectroscopy      617Ч618
Ab initio simulations      202Ч203
Abbouti Temsamani, M.      465(7) 488(7) 490 521(112 114) 529Ч530(112) 531(112 123) 532(123) 534Ч536(114) 579 580 809(1) 810(2) 810
Abramson, E.      493(3) 575
Absorption spectrum, OCS, VUV region      790Ч791
Acetylene, Darling Ч Dennison resonance      600
Acetylene, dispersed fluorescence spectra      465Ч468 602Ч603
Acetylene, electronic transitions      602
Acetylene, Hamiltonian      533
Acetylene, Lyapunov exponents of periodic orbits      534 536
Acetylene, order in chaotic region      591
Acetylene, Poincare mappings      533Ч534
Acetylene, polyad model      595
Acetylene, spectral reorganization      591 593
Acetylene, stretching Darling Ч Dennison interaction      533
Acetylene, vibrational motion      530Ч536
Acetylene, vibrogram      532
Adams, C.S.      189Ч190(9) 191
Adams, J.E.      259(64) 262Ч263(64) 272
Adaptive learning algorithm      252
Adiabatic channel, statistical calculations      819Ч847
Adiabatic channel, statistical calculations, compared with VTST      835Ч842
Adiabatic channel, statistical calculations, comparison of SACM and VTST, anisotropic charge-locked permanent-dipole systems      839Ч841
Adiabatic channel, statistical calculations, comparison of SACM and VTST, general potentials      841Ч842
Adiabatic channel, statistical calculations, comparison of SACM and VTST, isotropic charge-locked permanent-dipole systems      836Ч839
Adiabatic channel, statistical calculations, dissociation, specific rate channels      832Ч835
Adiabatic channel, statistical calculations, number of open channels      832Ч835
Adiabatic channel, statistical calculations, potential curves      821Ч824
Adiabatic channel, statistical calculations, SACM applications to more complex reaction systems      842Ч846
Adiabatic channel, statistical calculations, thermal capture rate constants      823Ч832
Adiabatic channel, threshold energies      827
Agam, O.      503(38) 518(88) 577Ч578
Agmon, N.      393Ч394(19 23) 402
Aharonov, Y.      725
Aicher, P.      626(22) 645
Aker, P.M.      849(1) 849
Akesson, E.      394(27) 399(27) 402
Akimoto, H.      731(7) 733(7) 741
Akiyama, H.      405(5) 406
Akulin, V.M.      659(1) 659
Al'tshuler, B.L.      518(88) 519(92) 578Ч579
Alagia, M.      86(2) 87
Alber, G.      565(155) 570(155) 581
Albeverio, S.      517(79) 578
Albrecht, A.C.      146(54) 180 433(72) 437(72) 441
Alcaraz, C.      669(22) 697
Alexandrov, I.V.      393(12) 402
Alicki, R.      238(38) 271
Aliev, M.R.      496(17) 498(17) 576
Allen, J.      216(16) 271 328(4) 339(4) 341
Allen, L.      304(12) 312
Alonso Ramirez, D.      512Ч514(61) 578
Alonso, D.      495(14) 497(14) 500(14 31) 501(14) 504(14) 510(14) 514(14) 521(14) 524(14) 526Ч527(14) 529(14) 534(14) 541Ч542(14) 554(114) 558(114) 570(114) 576 785(64) 785
Alt, C.      682(38) 697
Alt, C.E.      626(9 15) 629(9 15) 645
Amat, G.      486(17) 490
Ambartsumian, R.V.      327(3) 339(3) 341 661(2) 662
Ambegeokar, V.      393Ч394(14) 402
Amirav, A.      419(45) 440
Amplitude imaging      see "Phase and amplitude imaging"
Amrein, A.H.      626(25) 645
Amstrup, B.      48(10) 59(10) 75 218(19) 250(59) 252(59 61) 271Ч272 317(6) 322 328Ч329(20) 332(20) 335(20) 339(20) 342
Anandan, J.      725
Anderson, E.M.      412(13) 440
Anderson, S.L.      669(21) 697
Andr, J.C.      279(2) 280
Andreev, A.V.      518(88) 578
Andreev, S.V.      661(5) 662
Andresen, P.      327(3) 339(3) 341 768(61) 785
Anharmonic resonances      466Ч467 473 476 488
Antonov, V.S.      661(5Ч7) 662
Apanasevich, P.A.      333(33) 343
Apkarian, V.A.      146(21) 179 373(7) 374
Arcuni, P.W.      705(19Ч20) 708
Argon, autoionizing Rydberg states, matrix diagonalization approach      691Ч692
Argon, autoionizing Rydberg states, MQDT calculations      689Ч692
Argon, total ion compared with threshold spectrum      614 616
Arimondo, E.      302(10) 305(10) 307(10) 312
Arndt, M.      542(142) 580
Arnett, D.C.      348(20 22) 371
Arnold, C.C.      668(5) 697
Arnold, V.I.      496(19) 501(19) 509(19) 542Ч543(19) 546Ч547(19) 551(19) 576
Asano, T.      395(40) 399(40) 403
Asano, Y.      194
Ashfold, M.N.R.      668(9) 697 726(1) 726
Ashijian, P.      373(7) 374
Aspect, A.      302(10) 305(10) 307(10) 312
Assion, A.      55(19) 60(37) 64(43) 76 79(5) 79
Astholz, D.C.      835(22) 847
Astrom, K.J.      319(9) 322
Asymmetric double well, quantum dynamics      150Ч151
Atabek, O.      48(12Ч13) 76 703Ч704(10) 708
Athanassenas, K.      626(27) 646
Atkinson, J.B.      87 89(5)
Aubanel, E.      328(11) 339(11) 342
Aubanel, E.E.      841(28) 847
Augst, S.      374(1) 376(1) 377
Aumayr, F.      626(28) 646
Aurell, E.      501(34) 577
Aurich, R.      518(87) 578
Autocorrelation function      511Ч512
Autocorrelation function, classical behavior      521
Autocorrelation function, Fourier transform      601Ч602
Autocorrelation function, polarization operators      365
Autocorrelation signal, gated      348Ч349 359Ч362
Autocorrelation signal, ideal      349
Autoionization states      662Ч663
Avouris, P.      411(8) 439
Backhaus, P.      87 89(4)
Badar, J.S.      394(33) 403
Baer, M.      855(8) 867
Baer, T.      668(3) 697
Baessman, C.      620(25) 623
Bagchi, B.      142(5) 145(5) 172(5) 179 394(25Ч26 35) 402Ч403
Baggott, J.E.      327(3) 339(3) 341 373(6) 374
Bagratashvili      451(1) 451
Bahatt, D.      434(83) 437(83) 441 626(18) 628(18) 645Ч646 702(3) 707
Bahns, J.      308(16) 312
Bain, A.J.      400(49) 403
Baker, A.D.      609(2) 616(2) 623
Baker, C.      609(2) 616(2) 623
Baklshiev, N.G.      394(39) 403
Balakrishnan, N.      201(18) 202 332(29)
Balian, R.      236(34) 271
Balint-Kurti, G.G.      768(61) 785
Balling, P.      65(48) 77
Balucani, N.      86(2) 87
Balykin, V.I.      185(4) 189(4 8 10) 190(10) 191
Banared, L.      399(47) 403
Band, Y.B.      423(57) 425(64) 441 444(1) 444
Bandrauk, A.      302(4) 312
Bandrauk, a.d.      48(11) 65(11) 76 286(3) 292 375Ч376(2) 377
Banin, U.      196(8Ч9) 198
Baranger, M.      521(109) 546(144) 579 581
Baranov, L.Y.      434(85) 437(85) 442 626(3) 629(41) 634(3) 643(3a) 645Ч646
Baranova, B.A.      286(8) 292
Baras, F.      514(64) 578
Barbara, P.F.      394(27 36) 399(27) 402Ч403
Bardeen, C.J.      60(36) 62(36) 76
Barends, E.J.      573(161) 581
Barrier reactions      22Ч25
Bartana, A.      196(7Ч9) 196 198 239(40) 271 308(17) 312
Bartmess, J.E.      731(10) 741
Base pairs, photoinduced tautomerization      85
Basilevsky, M.V.      394(30) 399(30) 402
Basis functions, energy-dependent      755
Baskin, J.S.      40 85 391(1) 400Ч401(1) 401
Bates, D.R.      820(11) 847
Bauder, A.      416(36) 440
Bauer, C.      748Ч749(17) 751(17 32Ч33) 752(32Ч33) 753Ч754(32) 756(32) 761(32Ч33) 763(33) 764Ч767(32) 768Ч771(17) 783Ч784
Baumert, T.      49(14) 52(17Ч18) 55(19) 60(37) 63(41) 64(43) 65(18 55 49) 67(49) 72(54) 76Ч77 78(1 3) 79(5) 79 90(2) 90 103(6) 117(14) 131 135(8) 137 196(6) 196 217(17) 229Ч230(17) 271 328(10) 339Ч340(10) 341
Bauschlicher, Jr., C.W.      731(11) 741
Bayfield, J.      584(5) 585
Bear, T.      612(8Ч9) 614(10) 623
Beck, C.      812(4) 812 815(1) 815
Beck, M.      346(15) 371
Beddard, G.      4(8) 43
Beece, D.      405(1Ч2) 405Ч406
Beenakker, C.W.J.      519(92)
Beil, A.      377(3) 379
Bekov, G.I.      661Ч662(8) 662 663(2) 663
Ben-Nun, M.      95Ч96 153Ч154(29) 156(29) 157(31) 179Ч180 195 626(19) 645
Bennemann, K.H.      116(11) 131
Benvenuto, F.      584(6) 585
Benzene, coupling between Rydberg series      446
Benzene, intramolecular coupling      430Ч431
Benzene, intramolecular dynamics      412Ч415
Benzene, intramolecular dynamics, intermediate vibrational excess energy      414Ч415
Benzene, intramolecular dynamics, low excess energy      413Ч414
Benzene, photoelectron compared with ZEKE spectrum      617Ч619
Benzene, Rydberg spectrum      435Ч437
Benzene-$I_{2}$ complex, electron transfer reaction      83
Benzene/iodine bimolecular reaction      31Ч34
Berendzen, J.      405(4) 406
Berezhkovskii, A.M.      393(18) 394(21) 402
Berghout, H.L.      327(3) 339(3) 341
Bergmann, K.      328(5 9) 339(5 9) 341 423(56) 424(60) 425(60 62Ч63) 441
Berkovitz, J.      610(3) 623
Berkowitz, M.      393(17) 402
Berne, B.J.      855(7) 867
Bernstein, R.B.      4(11) 39(11) 43 86(1) 87 698 799(2) 806
Berry Ч Tabor periodic-orbit amplitudes      516
Berry Ч Tabor trace formula      506Ч509 573
Berry Ч Tabor trace formula, $CS_{2}$      527Ч528
Berry Ч Tabor trace formula, $C_{2}HD$      530
Berry, M.V.      493(13) 503(38) 505(41) 506Ч507(13) 511(58) 517(81Ч82) 518(84) 519(91) 576Ч579
Berry, R.S.      114Ч115(9) 131 634(47) 646 657(1) 657
Berry, S.      412(11) 439
Bersohn, R.      203(9) 204 434(78) 441 800(6) 804(15) 806
Beswick, J.A.      637(55) 646 764(54) 785
Bifurcation theory      591
Bifurcation, associated with transition to chaos      545Ч552
Bifurcation, associated with transition to chaos, area-preserving mappings      545Ч546
Bifurcation, associated with transition to chaos, periodic-orbit dividing surfaces      545Ч547
Bifurcation, associated with transition to chaos, subcritical antipitchfork      548Ч550
Bifurcation, associated with transition to chaos, supercritical antipitchfork      546Ч548
Bifurcation, associated with transition to chaos, tangent      550Ч552
Bifurcation, decay modes      631Ч632
Bimolecular charge-dipole capture process      820
Bimolecular reactions, ground-state dynamics      25Ч27
Bimolecular scattering      295Ч300
Bimolecular scattering, general superposition states      299
Bisht, P.B.      394(29) 399(29) 402
Bisseling, R.H.      200(3) 201(10) 201Ч202 458(3) 458 761(51) 784 812(3) 812
Bittman, J.S.      760(48) 784
Bixon, M.      411(9) 434(88) 437(88) 439 442 537(128) 580 629(39) 642(62) 646 668(13) 681Ч682(13) 691Ч692(13) 697
Black, G.      791(8) 796
Blake, N.P.      201(13) 202
Blanc, J.      102Ч103(1) 131
Blanchet, V.      57(27) 76
Blank, D.A.      732(12) 737(12) 741
Bleher, P.M.      516(75) 518(75) 578
Blodgett-Ford, S.J.      510(51) 577
Bloembergen, N.      40
Blomberg, C.      393(9) 401
Bludsky, O.      416(34) 440
Bluemel, R.      511(57) 528(57) 541(141) 577 580
Boehm, A.      510(52) 577
Boehmer, W.      712(6) 715
Boers, B.      65(47) 77
Boesl, U.      620(25) 623
Bogomolny, E.      503(38) 577
Bohigas, O.      516(76) 517(77) 518(76) 578
Bohr Ч Sommerfeld orbit, effect of frequency of perturbation of core      625Ч627
Boller, K.-J.      302(7) 312
Bolte, J.      517(78) 518(87) 578
Boltzmann average, cumulative reaction probability      854
Bonacic-Koutecky, V.      79(9) 80 103(4) 114Ч115(10) 117(10 13 16Ч17) 118(13) 122(13) 129Ч130(25) 131Ч132 133(4 6Ч7) 134(4) 135(4 6) 135 136(4) 137 200(6) 201 203(4Ч5) 203
Bordas, C.      434(81) 441
Bordas, M.C.      538(129) 580
Borkovec, M.      392(3) 401
Born Ч Oppenheimer approximation      701Ч702
Born Ч Oppenheimer approximation, multichannel quantum defect theory      719
Born Ч Oppenheimer approximation, parameters      651
Born Ч Oppenheimer approximation, Rydberg series      722
Born Ч Oppenheimer channels      704
Born Ч Oppenheimer Hamiltonians      219Ч220
Born Ч Oppenheimer potential-energy surface      721
Born Ч Oppenheimer potential-energy surface, ground/excited      303
Born Ч Oppenheimer regime      623Ч624 626Ч621
Born Ч Oppenheimer regime, versus inverse Born Ч Oppenheimer regime      724Ч725
Born Ч Oppenheimer theory, coordinate-dependent electronic energies      706
Born, M.      189(10) 191 630(43) 634(43) 646
Borne, T.B.      612(7) 623
Botter, R.      612(9) 623
Bouchene, M.A.      57(27) 76
Bowman Ч Bitman Ч Harding potential-energy surface      760Ч761 763
Bowman, J.M.      760(43Ч44 48) 784
Bowman, R.M.      41Ч42 393(10) 400(10) 401 561(151) 566(151) 581 799(2) 806
Bowne, S.F.      405(2) 406
Bownman, R.M.      799(2) 806
Boyer, M.      538(129) 580
Br + $I_2$ exchange reaction, femtosecond dynamics      26Ч27
Bradforth, S.E.      146(14 18) 152(18) 154(18) 157(18) 158(18 34) 159(18) 179Ч180
Bramley, M.J.      201(11) 202
Brandao, J.      752(39) 784
1 2 3 4 5 6 7 8 9 10 11
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2017
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте