Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)
Àííîòàöèÿ: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.
The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:
Femtochemistry: chemical reaction dynamics and their control Coherent control with femtosecond laser pulses Femtosecond chemical dynamics in condensed phases Control of quantum many-body dynamics Experimental observation of laser control Solvent dynamics and RRKM theory of clusters High-resolution spectroscopy and intramolecular dynamics Molecular Rydberg states and ZEKE spectroscopy Transition-state spectroscopy and photodissociation Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.
The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.
Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.
The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.
An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.
From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 945
Äîáàâëåíà â êàòàëîã: 11.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Powis, I. 668(3) 697
Pratt, S.T. 434(80) 441 459(1) 459 629(38) 646 668(16) 681(16) 697 706(27—30) 708
Predissociation process 418
Preparation coefficients 801
Press, W.H. 332(30) 342
Primas, H. 93(6) 93
Prince, S.M. 158(33) 180
Pritchard, H.O. 493(8) 575
Probability densities, as function of time 588—589
Product branching ratio, photodissociation of 285—286
Protein dynamics, solvent viscosity effects 405
Provost, D. 521(109) 579
Pseudorotations 133—134
Pshenichnikov, M.S. 348(21) 371
Puget, P. 485(15) 490
Pugliano, N. 395(42) 399(42) 403
Pullerits, T. 146(19) 152(19) 160(19) 179
Pullman, B. 454—455(1) 455 588(5) 589
Pulsed-field ionization, 681
Pulsed-field ionization, hydrogen 723—724
Pulsed-field ionization, Rydberg states 668—670
Pump-probe experiments, bound excited trimer states 117—122
Pump-probe experiments, phase-sensitive 57—59
Pump-probe experiments, potassium clusters 126
Pump-probe schemes 52—57
Pump-probe signal, doorway-window phase-space wavepackets 369—370
Pump-probe signal, NO in argon matrices 713—714
Purple photosynthetic bacteria, light-harvesting protein 157
Qian, C.X.W. 767(57) 785
Qiu, P. 86(2) 87
Quack, M. 84(1—2) 84 93(2—5 7) 93 377(2—6) 378(4) 379(7—8) 379 380(6) 443(1) 443 451(1—4) 453(4—8) 453 454(1 3) 454 455(1—6) 455—456 537(126) 539(134) 580 587(1—4) 588(5—7) 588—589 590(1) 591 595(1—2) 595 750(24) 779(70—71) 784—785 820(5) 835(5 24) 847
Quaid et al. 716
Quantization, periodic regime 555—557
Quantization, periodic-orbit, fully chaotic regime 557—561
Quantization, semiclassical 494—514
Quantization, semiclassical, around isolated equilibrium points 496—498
Quantization, semiclassical, Berry — Tabor trace formula 506—509
Quantization, semiclassical, bifurcating periodic orbits 509—510
Quantization, semiclassical, Gutzwiller trace formula 498—502
Quantization, semiclassical, rate and relaxation behavior emergence 511—514
Quantization, semiclassical, semiclassical scattering 510—511
Quantization, semiclassical, time evolution 494—496
Quantization, semiclassical, zeta function and interference between isolated periodic orbits 502—504
Quantization, transition regime 557
Quantum computing 302
Quantum defect functions 659
Quantum defects, body-frame 705
Quantum defects, determination from experiment 706—707
Quantum defects, internuclear distance dependence 721
Quantum defects, matrix, diagonal and off-diagonal 721
Quantum dynamical localization 584—585
Quantum dynamics, control see "Feedback quantum
Quantum excitation, classical behavior 583
Quantum many-body dynamics 213—283 see "Tannor
Quantum many-body dynamics, active control 214—215
Quantum many-body dynamics, attainability of control 247—253
Quantum many-body dynamics, attainability of control, adaptive learning algorithm 252
Quantum many-body dynamics, attainability of control, feedback control 251
Quantum many-body dynamics, attainability of control, finite dimensional bilinear control representation 248
Quantum many-body dynamics, attainability of control, Huang — Tarn — Clark theorem 248
Quantum many-body dynamics, attainability of control, integral operator, Hilbert — Schmidt type 250
Quantum many-body dynamics, attainability of control, Lie algebra 248
Quantum many-body dynamics, attainability of control, pump-dump experiment 252
Quantum many-body dynamics, attainability of control, state-to-state transformation 250—251
Quantum many-body dynamics, Brumer — Shapiro method 219—226 276—277
Quantum many-body dynamics, control within linear response approximation 275—276
Quantum many-body dynamics, density matrix 276
Quantum many-body dynamics, dynamics-inverse scattering duality 267—269
Quantum many-body dynamics, excitation pathways, phase control 274
Quantum many-body dynamics, extension of control theory 218
Quantum many-body dynamics, generic conditions for control 237—247
Quantum many-body dynamics, generic conditions for control, combined density operator 237
Quantum many-body dynamics, generic conditions for control, conservation of population 239
Quantum many-body dynamics, generic conditions for control, density operator 243 245
Quantum many-body dynamics, generic conditions for control, dephasing 240
Quantum many-body dynamics, generic conditions for control, equation of motion 238—239
Quantum many-body dynamics, generic conditions for control, globally optimum control field 244—246
Quantum many-body dynamics, generic conditions for control, Hamiltonian 237
Quantum many-body dynamics, generic conditions for control, Lagrange multipliers 245—246
Quantum many-body dynamics, generic conditions for control, loading term, spatial derivative 240
Quantum many-body dynamics, generic conditions for control, phase angle 241—243
Quantum many-body dynamics, generic conditions for control, radiative coupling term 237—238
Quantum many-body dynamics, generic conditions for control, resonant electric field components 240
Quantum many-body dynamics, generic conditions for control, transfer equations 240—241
Quantum many-body dynamics, issues 218—219
Quantum many-body dynamics, optimal control theory 217—218 231
Quantum many-body dynamics, optimal control theory, IR laser pulse variant 274
Quantum many-body dynamics, phase-space formulation 276
Quantum many-body dynamics, product selectivity control 215—216
Quantum many-body dynamics, shaped pulse control, experimental status 273
Quantum many-body dynamics, Tannor — Rice control scheme 216—217
Quantum mechanics, time evolution 494—496
Quantum numbers 809
Quantum numbers, pseudo 809—810
Quantum operators, Weyl — Wigner transforms 499
Quantum packet, localized, propagation 43—44
Quantum systems, transition to chaotic motion 584
Quantum theory 854—859
Quast, H. 329(26) 331(26) 339(35) 340—341(26) 343
Quiniales, L.A.M. 752(39) 784
Quint, W. 379(9) 381
Rabalais, J.W. 791(5) 796
Rabani, E. 434(85) 437(85) 442 626(3) 627(3c 5) 628(3c) 629(2 3a) 634(2 3 5) 636(3c 5) 639(3b) 643(3a 3d) 645 650 659 668(14) 681—682(14) 697—698 724(1) 724
Rabi frequencies 427
Rabi oscillations 81
Rabinovich, S. 393—394(23) 402
Rabitz, H. 215(7—10 11) 218(7 21—23) 226(7—8) 236(8—9) 248(51) 249(51 54 56) 250(56—59) 251(57—58 60) 252(59) 268—269(76—78) 270—272 274(3) 275 281(3) 281 286(2) 292 302(3) 312 315(1—2) 316(1 4) 317(5—6) 318(7—8) 319(1 10a 10b) 320—321(13) 522 328(8) 339(8) 341 346(5) 370 373(2) 575
Rabitz, H.J. 48(5—9) 75
Radiationless transitions, molecule-preserving 894
Radzewicz, C. 800(3 5) 806
Raftery, D. 395(46) 403
Rai, S.N. 835(25) 847
Raineri, F.O. 142(6) 145(6) 173(6) 179
Rajaram, B. 465(1 5) 467(1) 484—489(5) 490
Rakowsky, S. 72(52) 77
Raksi, F. 18(15) 43 274(8) 275(1) 275—276 302(5) 512 346(6) 370
Ramakrishna, V. 218(22) 248—249(51) 268—269(77) 271—272 315(2) 522
Raman scattering, coherent, shift 444—445
Raman scattering, stimulated, for probing wavepacket dynamics 109—110
Ramillon, M. 820(13) 847
Rampsberger — Rice — Kassel — Marcus theory see "RRKM theory"
Random matrices 518
Rankin, C. 778(69) 785
Raoult, M. 678(36) 697 706(23 26) 707(33) 708
Rappaport, F. 146(15) 160(15) 179
Rare gases, condensed, bubble formation on Rydberg state excitation 711—718
Rasaiah, J.C. 394(24) 402
Raseev, G. 746(7) 783
Raski, F. 235(30) 265(30) 271
Ratner, M.A. 393(16) 402 868(5) 868
Raymer, M.G. 346(15) 571
Reaction path Hamiltonian analysis 259
Reaction probability operator 857
Reactions, coherence in 14
Reactions, control, imposing our will on molecules 594—595
Reactions, femtosecond dynamics 14 16
Redfield equation, Wigner representation 205
Redfield superoperator, frequency-dependent 200
Redfield theory 147 195
Redfield theory, multilevel 148—152
Redfield, A.G. 147(26) 179
Reduced space analyses 253—267 281
Reduced space analyses in coordinate space 259—260 262—265
Reduced space analyses in state space 253—259
Reduced space analyses, density matrix element, time dependence 257
Reduced space analyses, equation of motion 2S4
Reduced space analyses, factorization 265—267
Reduced space analyses, frequency-independent effective operator 256
Reduced space analyses, kinetic energy 262
Reduced space analyses, optimal control theory, reaction coordinate representation 264
Reduced space analyses, polyatomic reactant 262—263
Reduced space analyses, population dynamics 256
Reduced space analyses, population dynamics, three-level system 257—258
Reduced space analyses, potential-energy surface, reduced-dimension 262
Reduced space analyses, projection operator 255
Reduced space analyses, reaction path Hamiltonian 259 263—264
Reduced space analyses, reduced density matrix 265
Reduced space analyses, time evolution matrix 255
Reduced space analyses, time evolution operator 255—256
Reduced space analyses, Zhao — Rice reduction scheme 264—265
Refaey, K. 679(37) 697 699
Refractive index 186
Reid, S.A. 779(72) 782(79—80) 785 794(18b) 797
Reilly, J.P. 617(19) 623
Reimers, Th. 129(24) 132
Reinginger, R. 713(12) 715
Reinisch, L. 405(1—2) 405—406
Reinot, T. 171(41) 180
Reischl, B. 79(8—9) 80 117(13 15) 118(13) 120—121(15) 122(13 15) 131 132(1) 133(4—5 7) 134(1 135(4—5) 135 136(4—5) 137 196(1—2) 196 197(1—2) 200(6) 201 202(1 3) 203(4—5) 203
Reischl-Lenz, B. 133(6) 135(6) 137 203(5) 203
Reiser, G. 434(74) 441 615(11) 619(21—22) 620(22) 623 659(1) 659 668(6) 676(34) 697 701(1) 707
Reisler, H. 746(10) 759(41) 765(10) 767(57—58) 778(10) 779(10 72—73) 782(79—80) 783—785 794(18a 18b) 797
Reitze, D.H. 59(30) 76
Relaxation, emergence, quasiclassical regime 511—514
Remade, F. 434(85) 437(85) 442 541(140) 580 631(45) 634(45a) 636(45a 45b 45f 51) 639(45c) 640(45) 641(51) 642(45b) 643(45b 45d) 646 649 652 668(18) 681—682(18) 691(18) 697
REMPI technique 661 669
Renner — Teller effect 720
Repeller 510—511 543—545
Repeller, 567—571
Repeller, 561—565
Repeller, fully chaotic regime 551—552
Repeller, Smale horseshoes 552—554 557—559
Repinec, S.T. 395(42) 399(42) 403
Resat, H. 142(6) 145(6) 173(6) 179
Resolvent, classical Liouvillian 512—513
Resonance see also "Unimolecular dissociation resonances"
Resonance photoionization spectroscopy 660
Resonance wave functions, angular dependence, HCO 765 767
Resonance wave functions, HCO 756—757
Resonance wave functions, water 775—777 786
Resonance, distribution, chi-square probability 540
Resonance, distribution, unimolecular dissociation rates 539—541
Resonance, dominant, lifetimes 497
Resonance, mode-specific behavior 750
Resonance, statistical behavior 750
Resonance-enhanced multiphoton ionization 661 669
Resonant continuous electric field 254
Resonant torus 507—508
Response function, linear 386
Response function, nonlinear 386—387
Response function, nonlinear, chaos and 388
Response function, nth-order 388
Retterling, W.T. 332(30) 342
Reuss, J. 423(58) 440
Reverse unimolecular dissociation 820
Reynaud, S. 382(10) 385
Reynolds, A.H. 405(1) 405
Rhodes, W. 382(16) 385
Rice, O.K. 410(1) 439
Rice, S. 57(21) 59(21) 76 317(6) 522
Rice, S.A. 48(3—4 10) 59(4 10 28) 75—76 78—79(2) 79 90(4—5) 90 196(10) 198 200(5) 201 215(4—6) 216(4—5) 217(18) 218(6 19—20 24) 226(4 6) 228(5) 231(6) 233(6) 241(18) 246(20) 249(52 55) 250(55) 253(20 255(20) 257—258(20) 262(24) 270—272 273—274(1) 274 282(1) 286(2) 291 302(18) 303(11) 512—515 328(6) 339—340(6) 341 346(1) 370 373(1) 575 412(17) 418(40) 419(49) 440 458(1) 458 501(33) 514(33) 517(33) 519(95 102) 520(103) 542—543(33) 555(149) 559—560(33) 565(33) 579 581 636(54) 642(54) 646 875(4) 886
Richard, E. 453(6) 453
Riedle, E. 410(3—4) 413(3—4 19—22) 414(3—4 24 27) 415(3 28—29) 416(31 37) 417(29) 418(37) 428(22) 431(65) 432(68) 435(22) 439—441
Rieger, D. 619(21) 623
Rigrod, W.W. 187(6) 191
Ring, H. 528(119) 580
Rinneberg, H. 510(51) 577
Rips, I. 393(15) 402
Ro-vibrational cluster 811
Roberts, G. 561(151) 566(151) 581 799(2) 806
Roberts, R. 279(1) 280
Robertson, S.H. 515(71) 539(71) 578
Robie, D.C. 782(79—80) 785 794(18b) 797
Robinson, G.W. 412(16) 419(43) 440
Robinson, P.J. 750(26) 784
Roche, A.L. 707(31) 708
Rodgers, D. 669(26) 697
Roemelt, J. 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 581 812(3) 812 849(2) 849
Rohlfing, E.A. 759(42) 761(42 49) 763(42) 784
Romero-Rochin, V. 57(21) 59(21) 76 217(18) 242(18) 271 303(11) 312
Ronkin, J. 505(44) 577
Rose oxide, manufacture 280
Rose, T.S. 41 522(115) 525—526(115) 579
Rose-Petruck, C. 235(30) 265(30) 271 274(8) 275(1) 275—276 346(6) 370
Rosenblit, M. 714(13) 715
Rosenthal, S.J. 142(3) 145(3) 173(3) 179 394(31 34) 403
Rosker, M.J. 41 90(6) 90 522(115) 525—526(115) 579
Rosmus, P. 528(119) 580 748—749(17) 751(17 32—33) 752(32—33) 756(32) 761(32—33) 763(33) 764—767(32) 768—771(17) 783—784
Ross, G.C. 746(7) 783
Ross, S.G. 490 704(11) 706(30) 708
Rosums, P. 328—329(20) 332(20) 335(20) 339(20) 342
Rotation-electron coupling 703
Rotation-vibration eigenstate 468—469
Rotational coherence spectroscopy 11—13
Rothenberger, G. 393(11) 401
Rottke, H. 493(11) 510(11) 576
Rouben, D.C. 521(110) 526(110) 579
Rouleau, G. 379(9) 381
Rovibronic reaction matrix 703
Rovibronic transitions, eliminating Doppler broadening 410
Roy, S. 142(5) 145(4) 172(5) 179 394(34) 403
RRKM theory 456—457 750—751
RRKM theory, extension 786 812
RRKM theory, unimolecular dissociation rates 539—541
RRKMM theory 812 see RRKM
RRKMM theory, rate constant, calculation 648
Rubahn, H.G. 423(56) 441
Rudecki, P. 328(9) 339(9) 341 425(62) 441
Rudolph, H. 617—618(18) 623
Ruelle topological pressure 501—502
Ruelle, D. 514(63) 578
Ruff, A. 124—125(22) 126(23) 128—129(23) 131
Ruggiero, A.J. 57(21) 59(21) 76 217(18) 242(18) 271 303(11) 312
Ruhman, S. 79(4) 79 173(47) 180 196(3 8—9) 196 198
Ruscic, B. 610(3) 623
Russek, A. 634(48) 646
Russell, M.E. 679(37) 697 699
Rutz, S. 79(8—9) 80 104—106(7) 111(8) 114—115(9) 117(13 15) 118(13) 120(15) 121(15 19) 122(13 15) 123(21) 124(21—22) 124(8) 125(22) 126(23) 128—129(23) 131 132(1—2) 133(4 7) 134(1 4) 135(1 4 7) 135 136(1 4) 137 196(1—2) 196 197(1—2) 200(6) 201 202(1—3) 203(4—5 7) 203—204 657(1) 657
Ryaboy, V. 760(45) 784
Rydberg electron, bulb, nitric oxide 716
Rydberg electron, coupled to vibration 635 659
Rydberg electron, effects of environment 664
Rydberg electron, frequencies 702
Rydberg electron, high orbital angular momentum states 705—706
Rydberg electron, orbiting rotating ionic core 651
Rydberg electron, perturbation 644
Rydberg formula 435
Rydberg molecules, in electric fields 657—658
Rydberg series, Born — Oppenheimer approximation 722
Rydberg series, coupling, benzene 446—447
Rydberg states, adjacent, energy spacings 445—146
Rydberg states, as zero-order basis 650
Rydberg states, autoionizing 685
Rydberg states, autoionizing, multichannel quantum defect theory 686—696
Rydberg states, complex molecules 669
Rydberg states, congestion 630
Rydberg states, crossings 443—444
Rydberg states, dynamics 668
Rydberg states, excitation, bubble formation in condensed rare gases 711—718
Rydberg states, HgNe van der Waals dimer 715—716
Rydberg states, high 625—645
Rydberg states, high, average decay width 631
Rydberg states, high, bifurcation, decay modes 631—632
Rydberg states, high, bottlenecks 631—633
Rydberg states, high, bound phase space 631 633
Rydberg states, high, condensed-phase environment 664
Rydberg states, high, decay, physical nature 630
Rydberg states, high, lifetime 615—616 626 629 682—683
Rydberg states, high, lifetime, external perturbers and 632—633
Rydberg states, high, motivations for study 625—626
Ðåêëàìà