Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Powis, I.      668(3) 697
Pratt, S.T.      434(80) 441 459(1) 459 629(38) 646 668(16) 681(16) 697 706(27—30) 708
Predissociation process      418
Preparation coefficients      801
Press, W.H.      332(30) 342
Primas, H.      93(6) 93
Prince, S.M.      158(33) 180
Pritchard, H.O.      493(8) 575
Probability densities, as function of time      588—589
Product branching ratio, photodissociation of $Na_{2}$      285—286
Protein dynamics, solvent viscosity effects      405
Provost, D.      521(109) 579
Pseudorotations      133—134
Pshenichnikov, M.S.      348(21) 371
Puget, P.      485(15) 490
Pugliano, N.      395(42) 399(42) 403
Pullerits, T.      146(19) 152(19) 160(19) 179
Pullman, B.      454—455(1) 455 588(5) 589
Pulsed-field ionization, $H_{2}$      681
Pulsed-field ionization, hydrogen      723—724
Pulsed-field ionization, Rydberg states      668—670
Pump-probe experiments, bound excited trimer states      117—122
Pump-probe experiments, phase-sensitive      57—59
Pump-probe experiments, potassium clusters      126
Pump-probe schemes      52—57
Pump-probe signal, doorway-window phase-space wavepackets      369—370
Pump-probe signal, NO in argon matrices      713—714
Purple photosynthetic bacteria, light-harvesting protein      157
Qian, C.X.W.      767(57) 785
Qiu, P.      86(2) 87
Quack, M.      84(1—2) 84 93(2—5 7) 93 377(2—6) 378(4) 379(7—8) 379 380(6) 443(1) 443 451(1—4) 453(4—8) 453 454(1 3) 454 455(1—6) 455—456 537(126) 539(134) 580 587(1—4) 588(5—7) 588—589 590(1) 591 595(1—2) 595 750(24) 779(70—71) 784—785 820(5) 835(5 24) 847
Quaid et al.      716
Quantization, periodic regime      555—557
Quantization, periodic-orbit, fully chaotic regime      557—561
Quantization, semiclassical      494—514
Quantization, semiclassical, around isolated equilibrium points      496—498
Quantization, semiclassical, Berry — Tabor trace formula      506—509
Quantization, semiclassical, bifurcating periodic orbits      509—510
Quantization, semiclassical, Gutzwiller trace formula      498—502
Quantization, semiclassical, rate and relaxation behavior emergence      511—514
Quantization, semiclassical, semiclassical scattering      510—511
Quantization, semiclassical, time evolution      494—496
Quantization, semiclassical, zeta function and interference between isolated periodic orbits      502—504
Quantization, transition regime      557
Quantum computing      302
Quantum defect functions      659
Quantum defects, body-frame      705
Quantum defects, determination from experiment      706—707
Quantum defects, internuclear distance dependence      721
Quantum defects, matrix, diagonal and off-diagonal      721
Quantum dynamical localization      584—585
Quantum dynamics, control      see "Feedback quantum
Quantum excitation, classical behavior      583
Quantum many-body dynamics      213—283 see "Tannor
Quantum many-body dynamics, active control      214—215
Quantum many-body dynamics, attainability of control      247—253
Quantum many-body dynamics, attainability of control, adaptive learning algorithm      252
Quantum many-body dynamics, attainability of control, feedback control      251
Quantum many-body dynamics, attainability of control, finite dimensional bilinear control representation      248
Quantum many-body dynamics, attainability of control, Huang — Tarn — Clark theorem      248
Quantum many-body dynamics, attainability of control, integral operator, Hilbert — Schmidt type      250
Quantum many-body dynamics, attainability of control, Lie algebra      248
Quantum many-body dynamics, attainability of control, pump-dump experiment      252
Quantum many-body dynamics, attainability of control, state-to-state transformation      250—251
Quantum many-body dynamics, Brumer — Shapiro method      219—226 276—277
Quantum many-body dynamics, control within linear response approximation      275—276
Quantum many-body dynamics, density matrix      276
Quantum many-body dynamics, dynamics-inverse scattering duality      267—269
Quantum many-body dynamics, excitation pathways, phase control      274
Quantum many-body dynamics, extension of control theory      218
Quantum many-body dynamics, generic conditions for control      237—247
Quantum many-body dynamics, generic conditions for control, combined density operator      237
Quantum many-body dynamics, generic conditions for control, conservation of population      239
Quantum many-body dynamics, generic conditions for control, density operator      243 245
Quantum many-body dynamics, generic conditions for control, dephasing      240
Quantum many-body dynamics, generic conditions for control, equation of motion      238—239
Quantum many-body dynamics, generic conditions for control, globally optimum control field      244—246
Quantum many-body dynamics, generic conditions for control, Hamiltonian      237
Quantum many-body dynamics, generic conditions for control, Lagrange multipliers      245—246
Quantum many-body dynamics, generic conditions for control, loading term, spatial derivative      240
Quantum many-body dynamics, generic conditions for control, phase angle      241—243
Quantum many-body dynamics, generic conditions for control, radiative coupling term      237—238
Quantum many-body dynamics, generic conditions for control, resonant electric field components      240
Quantum many-body dynamics, generic conditions for control, transfer equations      240—241
Quantum many-body dynamics, issues      218—219
Quantum many-body dynamics, optimal control theory      217—218 231
Quantum many-body dynamics, optimal control theory, IR laser pulse variant      274
Quantum many-body dynamics, phase-space formulation      276
Quantum many-body dynamics, product selectivity control      215—216
Quantum many-body dynamics, shaped pulse control, experimental status      273
Quantum many-body dynamics, Tannor — Rice control scheme      216—217
Quantum mechanics, time evolution      494—496
Quantum numbers      809
Quantum numbers, pseudo      809—810
Quantum operators, Weyl — Wigner transforms      499
Quantum packet, localized, propagation      43—44
Quantum systems, transition to chaotic motion      584
Quantum theory      854—859
Quast, H.      329(26) 331(26) 339(35) 340—341(26) 343
Quiniales, L.A.M.      752(39) 784
Quint, W.      379(9) 381
Rabalais, J.W.      791(5) 796
Rabani, E.      434(85) 437(85) 442 626(3) 627(3c 5) 628(3c) 629(2 3a) 634(2 3 5) 636(3c 5) 639(3b) 643(3a 3d) 645 650 659 668(14) 681—682(14) 697—698 724(1) 724
Rabi frequencies      427
Rabi oscillations      81
Rabinovich, S.      393—394(23) 402
Rabitz, H.      215(7—10 11) 218(7 21—23) 226(7—8) 236(8—9) 248(51) 249(51 54 56) 250(56—59) 251(57—58 60) 252(59) 268—269(76—78) 270—272 274(3) 275 281(3) 281 286(2) 292 302(3) 312 315(1—2) 316(1 4) 317(5—6) 318(7—8) 319(1 10a 10b) 320—321(13) 522 328(8) 339(8) 341 346(5) 370 373(2) 575
Rabitz, H.J.      48(5—9) 75
Radiationless transitions, molecule-preserving      894
Radzewicz, C.      800(3 5) 806
Raftery, D.      395(46) 403
Rai, S.N.      835(25) 847
Raineri, F.O.      142(6) 145(6) 173(6) 179
Rajaram, B.      465(1 5) 467(1) 484—489(5) 490
Rakowsky, S.      72(52) 77
Raksi, F.      18(15) 43 274(8) 275(1) 275—276 302(5) 512 346(6) 370
Ramakrishna, V.      218(22) 248—249(51) 268—269(77) 271—272 315(2) 522
Raman scattering, coherent, shift      444—445
Raman scattering, stimulated, for probing wavepacket dynamics      109—110
Ramillon, M.      820(13) 847
Rampsberger — Rice — Kassel — Marcus theory      see "RRKM theory"
Random matrices      518
Rankin, C.      778(69) 785
Raoult, M.      678(36) 697 706(23 26) 707(33) 708
Rappaport, F.      146(15) 160(15) 179
Rare gases, condensed, bubble formation on Rydberg state excitation      711—718
Rasaiah, J.C.      394(24) 402
Raseev, G.      746(7) 783
Raski, F.      235(30) 265(30) 271
Ratner, M.A.      393(16) 402 868(5) 868
Raymer, M.G.      346(15) 571
Reaction path Hamiltonian analysis      259
Reaction probability operator      857
Reactions, coherence in      14
Reactions, control, imposing our will on molecules      594—595
Reactions, femtosecond dynamics      14 16
Redfield equation, Wigner representation      205
Redfield superoperator, frequency-dependent      200
Redfield theory      147 195
Redfield theory, multilevel      148—152
Redfield, A.G.      147(26) 179
Reduced space analyses      253—267 281
Reduced space analyses in coordinate space      259—260 262—265
Reduced space analyses in state space      253—259
Reduced space analyses, density matrix element, time dependence      257
Reduced space analyses, equation of motion      2S4
Reduced space analyses, factorization      265—267
Reduced space analyses, frequency-independent effective operator      256
Reduced space analyses, kinetic energy      262
Reduced space analyses, optimal control theory, reaction coordinate representation      264
Reduced space analyses, polyatomic reactant      262—263
Reduced space analyses, population dynamics      256
Reduced space analyses, population dynamics, three-level system      257—258
Reduced space analyses, potential-energy surface, reduced-dimension      262
Reduced space analyses, projection operator      255
Reduced space analyses, reaction path Hamiltonian      259 263—264
Reduced space analyses, reduced density matrix      265
Reduced space analyses, time evolution matrix      255
Reduced space analyses, time evolution operator      255—256
Reduced space analyses, Zhao — Rice reduction scheme      264—265
Refaey, K.      679(37) 697 699
Refractive index      186
Reid, S.A.      779(72) 782(79—80) 785 794(18b) 797
Reilly, J.P.      617(19) 623
Reimers, Th.      129(24) 132
Reinginger, R.      713(12) 715
Reinisch, L.      405(1—2) 405—406
Reinot, T.      171(41) 180
Reischl, B.      79(8—9) 80 117(13 15) 118(13) 120—121(15) 122(13 15) 131 132(1) 133(4—5 7) 134(1 135(4—5) 135 136(4—5) 137 196(1—2) 196 197(1—2) 200(6) 201 202(1 3) 203(4—5) 203
Reischl-Lenz, B.      133(6) 135(6) 137 203(5) 203
Reiser, G.      434(74) 441 615(11) 619(21—22) 620(22) 623 659(1) 659 668(6) 676(34) 697 701(1) 707
Reisler, H.      746(10) 759(41) 765(10) 767(57—58) 778(10) 779(10 72—73) 782(79—80) 783—785 794(18a 18b) 797
Reitze, D.H.      59(30) 76
Relaxation, emergence, quasiclassical regime      511—514
Remade, F.      434(85) 437(85) 442 541(140) 580 631(45) 634(45a) 636(45a 45b 45f 51) 639(45c) 640(45) 641(51) 642(45b) 643(45b 45d) 646 649 652 668(18) 681—682(18) 691(18) 697
REMPI technique      661 669
Renner — Teller effect      720
Repeller      510—511 543—545
Repeller, $CO_{2}$      567—571
Repeller, $HgI_{2}$      561—565
Repeller, fully chaotic regime      551—552
Repeller, Smale horseshoes      552—554 557—559
Repinec, S.T.      395(42) 399(42) 403
Resat, H.      142(6) 145(6) 173(6) 179
Resolvent, classical Liouvillian      512—513
Resonance      see also "Unimolecular dissociation resonances"
Resonance photoionization spectroscopy      660
Resonance wave functions, angular dependence, HCO      765 767
Resonance wave functions, HCO      756—757
Resonance wave functions, water      775—777 786
Resonance, distribution, chi-square probability      540
Resonance, distribution, unimolecular dissociation rates      539—541
Resonance, dominant, lifetimes      497
Resonance, mode-specific behavior      750
Resonance, statistical behavior      750
Resonance-enhanced multiphoton ionization      661 669
Resonant continuous electric field      254
Resonant torus      507—508
Response function, linear      386
Response function, nonlinear      386—387
Response function, nonlinear, chaos and      388
Response function, nth-order      388
Retterling, W.T.      332(30) 342
Reuss, J.      423(58) 440
Reverse unimolecular dissociation      820
Reynaud, S.      382(10) 385
Reynolds, A.H.      405(1) 405
Rhodes, W.      382(16) 385
Rice, O.K.      410(1) 439
Rice, S.      57(21) 59(21) 76 317(6) 522
Rice, S.A.      48(3—4 10) 59(4 10 28) 75—76 78—79(2) 79 90(4—5) 90 196(10) 198 200(5) 201 215(4—6) 216(4—5) 217(18) 218(6 19—20 24) 226(4 6) 228(5) 231(6) 233(6) 241(18) 246(20) 249(52 55) 250(55) 253(20 255(20) 257—258(20) 262(24) 270—272 273—274(1) 274 282(1) 286(2) 291 302(18) 303(11) 512—515 328(6) 339—340(6) 341 346(1) 370 373(1) 575 412(17) 418(40) 419(49) 440 458(1) 458 501(33) 514(33) 517(33) 519(95 102) 520(103) 542—543(33) 555(149) 559—560(33) 565(33) 579 581 636(54) 642(54) 646 875(4) 886
Richard, E.      453(6) 453
Riedle, E.      410(3—4) 413(3—4 19—22) 414(3—4 24 27) 415(3 28—29) 416(31 37) 417(29) 418(37) 428(22) 431(65) 432(68) 435(22) 439—441
Rieger, D.      619(21) 623
Rigrod, W.W.      187(6) 191
Ring, H.      528(119) 580
Rinneberg, H.      510(51) 577
Rips, I.      393(15) 402
Ro-vibrational cluster      811
Roberts, G.      561(151) 566(151) 581 799(2) 806
Roberts, R.      279(1) 280
Robertson, S.H.      515(71) 539(71) 578
Robie, D.C.      782(79—80) 785 794(18b) 797
Robinson, G.W.      412(16) 419(43) 440
Robinson, P.J.      750(26) 784
Roche, A.L.      707(31) 708
Rodgers, D.      669(26) 697
Roemelt, J.      545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 581 812(3) 812 849(2) 849
Rohlfing, E.A.      759(42) 761(42 49) 763(42) 784
Romero-Rochin, V.      57(21) 59(21) 76 217(18) 242(18) 271 303(11) 312
Ronkin, J.      505(44) 577
Rose oxide, manufacture      280
Rose, T.S.      41 522(115) 525—526(115) 579
Rose-Petruck, C.      235(30) 265(30) 271 274(8) 275(1) 275—276 346(6) 370
Rosenblit, M.      714(13) 715
Rosenthal, S.J.      142(3) 145(3) 173(3) 179 394(31 34) 403
Rosker, M.J.      41 90(6) 90 522(115) 525—526(115) 579
Rosmus, P.      528(119) 580 748—749(17) 751(17 32—33) 752(32—33) 756(32) 761(32—33) 763(33) 764—767(32) 768—771(17) 783—784
Ross, G.C.      746(7) 783
Ross, S.G.      490 704(11) 706(30) 708
Rosums, P.      328—329(20) 332(20) 335(20) 339(20) 342
Rotation-electron coupling      703
Rotation-vibration eigenstate      468—469
Rotational coherence spectroscopy      11—13
Rothenberger, G.      393(11) 401
Rottke, H.      493(11) 510(11) 576
Rouben, D.C.      521(110) 526(110) 579
Rouleau, G.      379(9) 381
Rovibronic reaction matrix      703
Rovibronic transitions, eliminating Doppler broadening      410
Roy, S.      142(5) 145(4) 172(5) 179 394(34) 403
RRKM theory      456—457 750—751
RRKM theory, extension      786 812
RRKM theory, unimolecular dissociation rates      539—541
RRKMM theory      812 see RRKM
RRKMM theory, rate constant, calculation      648
Rubahn, H.G.      423(56) 441
Rudecki, P.      328(9) 339(9) 341 425(62) 441
Rudolph, H.      617—618(18) 623
Ruelle topological pressure      501—502
Ruelle, D.      514(63) 578
Ruff, A.      124—125(22) 126(23) 128—129(23) 131
Ruggiero, A.J.      57(21) 59(21) 76 217(18) 242(18) 271 303(11) 312
Ruhman, S.      79(4) 79 173(47) 180 196(3 8—9) 196 198
Ruscic, B.      610(3) 623
Russek, A.      634(48) 646
Russell, M.E.      679(37) 697 699
Rutz, S.      79(8—9) 80 104—106(7) 111(8) 114—115(9) 117(13 15) 118(13) 120(15) 121(15 19) 122(13 15) 123(21) 124(21—22) 124(8) 125(22) 126(23) 128—129(23) 131 132(1—2) 133(4 7) 134(1 4) 135(1 4 7) 135 136(1 4) 137 196(1—2) 196 197(1—2) 200(6) 201 202(1—3) 203(4—5 7) 203—204 657(1) 657
Ryaboy, V.      760(45) 784
Rydberg electron, bulb, nitric oxide      716
Rydberg electron, coupled to vibration      635 659
Rydberg electron, effects of environment      664
Rydberg electron, frequencies      702
Rydberg electron, high orbital angular momentum states      705—706
Rydberg electron, orbiting rotating ionic core      651
Rydberg electron, perturbation      644
Rydberg formula      435
Rydberg molecules, in electric fields      657—658
Rydberg series, Born — Oppenheimer approximation      722
Rydberg series, coupling, benzene      446—447
Rydberg states, adjacent, energy spacings      445—146
Rydberg states, as zero-order basis      650
Rydberg states, autoionizing      685
Rydberg states, autoionizing, multichannel quantum defect theory      686—696
Rydberg states, complex molecules      669
Rydberg states, congestion      630
Rydberg states, crossings      443—444
Rydberg states, dynamics      668
Rydberg states, excitation, bubble formation in condensed rare gases      711—718
Rydberg states, HgNe van der Waals dimer      715—716
Rydberg states, high      625—645
Rydberg states, high, average decay width      631
Rydberg states, high, bifurcation, decay modes      631—632
Rydberg states, high, bottlenecks      631—633
Rydberg states, high, bound phase space      631 633
Rydberg states, high, condensed-phase environment      664
Rydberg states, high, decay, physical nature      630
Rydberg states, high, lifetime      615—616 626 629 682—683
Rydberg states, high, lifetime, external perturbers and      632—633
Rydberg states, high, motivations for study      625—626
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå