Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)
Àííîòàöèÿ: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.
The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:
Femtochemistry: chemical reaction dynamics and their control Coherent control with femtosecond laser pulses Femtosecond chemical dynamics in condensed phases Control of quantum many-body dynamics Experimental observation of laser control Solvent dynamics and RRKM theory of clusters High-resolution spectroscopy and intramolecular dynamics Molecular Rydberg states and ZEKE spectroscopy Transition-state spectroscopy and photodissociation Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.
The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.
Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.
The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.
An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.
From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 945
Äîáàâëåíà â êàòàëîã: 11.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Rydberg states, high, quantum defect functions 659
Rydberg states, high, sensitivity to external perturbations 629
Rydberg states, high, time evolution 634—644
Rydberg states, high, time evolution, Coulomb interaction between two charges 634—635
Rydberg states, high, time evolution, coupling constants 634
Rydberg states, high, time evolution, diagonalizing effective Hamiltonian 640 642
Rydberg states, high, time evolution, effective Hamiltonian 636—639
Rydberg states, high, time evolution, intramolecular coupling 642
Rydberg states, high, time evolution, K eigenstates 639
Rydberg states, high, time evolution, separation of time scales 636
Rydberg states, high, time evolution, trapping versus dilution 639—644
Rydberg states, high, time scales 625—626
Rydberg states, high, time-resolved ZEKE spectroscopy 628—629
Rydberg states, high, ZEKE spectroscopy 626 632
Rydberg states, high, ZEKE spectroscopy, lifetime distribution 656—657
Rydberg states, lifetimes 681—683
Rydberg states, lifetimes, enhancement by electric fields 682
Rydberg states, lifetimes, experimental measurements 683—686
Rydberg states, low 634
Rydberg states, low, decay behavior 681
Rydberg states, low, dipole moment 719
Rydberg states, metastability 671
Rydberg states, molecular 701—702
Rydberg states, optical excitation 644
Rydberg states, overtones and 659
Rydberg states, perturbation by collision 680—681
Rydberg states, polyatomic molecules, intramolecular dynamics 433—438
Rydberg states, pulsed-field ionization 668—670
Rydberg states, relevance to photoselective excitation 458
Rydberg states, triplet 446—447
Rydberg — Rydberg transitions 712
Saalfrank, P. 79(6) 79 203(5) 203 333(33) 343
SACM 750—751 779 848
SACM, applications to more complex reaction systems 842—846
SACM, compared with VTST, anisotropic charge-permanent dipole systems 839—841
SACM, compared with VTST, general potentials 841—842
SACM, situations where it breaks down 849—850
SACM, thermal capture rate constants 828—829
SACM, transition-state switching 851
Saddle-point avoidance 407
Saddle-point transition state 22—25
Sadeghi, R. 538(132) 571—572(132) 580 795(19) 797
Saher, D. 519(97) 541(140) 579—580
Saito, S. 145(11) 172(11) 176(11) 179
Sakimoto, K. 686—687(42) 698 820(10) 847
Salamon, P. 239(43) 271
Salapaka, M.V. 248—249(51) 272
Saleh, B.E. 382(4) 385
Saltiel, J. 395(41) 400(41)
Samson, A.M. 274(4) 275 328(13) 332(13) 334(13) 339(13) 342
Sander, M. 616(14) 617—618(17) 623 676(35) 678(35) 697
Sargent, III, M. 243(44) 271
Sarkisian, A.A. 327(3) 339(3) 341
Sartakov, B. 423(58) 441
Sassara, A. 712(9) 715
Satchler, G.R. 745(3) 783
Sathyamurthy, N. 201(18) 202 332(27) 342
Savva, V.A. 274(4) 275 328(13—14 23) 329(14 23) 330(14) 332(13) 334(13 23) 335—336(14) 339(14 13 23) 341(14 23) 342
Scattering, semiclassical theories 510—511
Schaefer, F.P. 328(11) 339(11) 341
Schaeffer, III, H.E. 536(124) 580
Schalg, E.W. 663
Scharf, D. 81—82(1) 82 711—714(4) 715
Schatz, G.G. 86(2) 87
Scherer — Fleming wavepacket interferometry experiment 282
Scherer, N.F. 41 57(21) 59(21) 76 86(1) 87 145—145(28) 152(28) 172(44) 179—180 217(18) 242(18) 271 303(11) 312 346(4) 348(20 22) 370—371 394(31) 403 807
Scherr, V. 791(5) 796
Scherzer, W.G. 615(12) 623 626(9 14—15) 629(9 15 36) 630(36) 645—646 682(38) 697
Scheurer, G. 333(33) 343
Schichida, Y. 405(5) 406
Schiemann, S. 328(9) 339(9) 341 423(56) 425(62—63) 441
Schilcher, R.R. 382(7) 385
Schinke, R. 274(10) 275 327(1 3) 339(1 3) 341 373(6) 374 484(13) 486(16) 490 565(153) 566(159) 570(153) 573(159) 581 730(1) 741 745(4) 746(4 8—10) 747—748(16—17 34) 749(17 20) 750(20) 751(16—17 32—37) 752(4 32—33 38) 753(32 34) 754(4 32—34) 755(4) 756(32) 758(34 36—37) 760(34) 761(16 32—33) 762(8) 763(33) 764(4 32) 765(9—10 32 55—56) 766(32) 767(4 32 56 58—59) 768(17 60—62) 769(16—17 38) 770(16—17) 771(17) 772(8 34) 774(34 36) 775(36—37) 776—777(37) 778(4 9—10 37) 779(4 10 47) 780—781(37) 783—785 786(34) 790(4) 794(18a) 796—797 812(4) 812 815(1) 815
Schlag, E.W. 413(19) 414(23—24 27) 416(34 37) 418(37) 434(74) 440—441 610—611(5) 612(7—8) 615(11—13) 616(14—16) 617—618(17) 619(21—22) 620(22 25) 623 626(6a 7 20—21) 627(21) 629(6—7) 634(20—21) 645—646 656 659(1) 659 668(1 6) 676(35) 678(35) 682(38) 696—697 701(1) 707
Schlautmann, M. 320(11) 322
Schleich, W. 382(6) 385
Schlichting, I. 405(4) 406
Schmidt, B. 87 89(4) 274(5) 275 328—329(16) 332(16) 337(16) 339(16) 341(16) 342
Schmidt, C. 517(77) 578
Schmidt, I. 288(18) 292 803(14) 806
Schmidt, M. 129(24) 132
Schmidt, R. 657(1) 657
Schoen, J. 203(6) 203
Schoenlein, R.W. 146(17) 151—152(17) 178(17) 179
Schor, H.H.R. 200(3) 201 281(1) 281 328(12) 339(12) 342 849(2) 849
Schreiber, E. 79(8—9) 80 104—106(7) 111(8) 114—115(9) 117(13 15) 118(13) 120(15) 121(15 19) 122(13 15) 123(21) 124(8 21—22) 125(22) 126(23) 128—129(23) 131 132(1—2) 133(4 7) 134(1 4) 135 135(1—2 5) 136(1 4) 137 196(1—2) 196 197(1—2) 200(6) 201 202(1—3) 203(4—5 7) 203—204 657(1) 657
Schreiber, M. 333(33) 343
Schreier, H.-J. 274(7) 275 281(3) 281 328(8 23) 329(23)) 334(23) 339(8 23) 341(23) 341 373(2) 373 761(53) 785
Schroeder, J. 392(5) 393(8) 395(5 45) 399(8) 401 403 407
Schroeder, T. 748—749(17) 751(17) 768—771(17) 783
Schroedinger cat state 382
Schroedinger equation 231—232 686—687
Schroedinger equation, controlling dynamical evolution of system 248
Schroedinger equation, dynamics-inverse scattering duality 268—269
Schroedinger equation, eigenstate solutions 219
Schroedinger equation, nonlinear 318 320 322
Schroedinger equation, time evolution in quantum systems 494
Schroedinger equation, time-dependent 227 265 329
Schroedinger equation, time-reversed 386
Schroedinger representation, dynamics of n-state system 253—254
Schroedinger, E. 52(15) 76 92(1) 93
Schroedinger-type equations, coupled cubically nonlinear 317
Schubert, U. 410(4) 413(4 19 21) 414(4 27) 439—440
Schuette, C. 329(27) 341(27) 342
Schuss, A. 393(16) 402
Schuss, Z. 393(16) 402
Schwartz, S.D. 854(2) 867 868(2) 868
Schwartzer, D. 393(8) 399(8) 401
Schwarzer, D. 407
Schweizer, W. 519(91) 579
Schwenke, D.W. 493(9) 538(9) 575
Schwentner, N. 59(35) 76 273(1) 274(8) 274—275 711(1 3) 712(1 3 6—7) 713(10—11) 714—715
Scoles, G. 454(2) 455
Scott, J.L. 768(60) 785
Scully, M.O. 243(44) 271 302(8) 312
Sears, T.J. 747(14) 783
Seaton, M.J. 686(39) 698 703(8) 708
Seba, P. 517(79) 578
Segev, E. 274(10) 275 327(1) 339(1) 341 373(6) 374
Seideman, T. 296(4) 300 854—855(3) 857(3) 859(11) 860(3) 861(11) 862(3b) 865(3a) 867 868(3 5) 868
Seifert, F. 339(36) 343
Sekatsky, S. 880(9) 883(9) 886
Sekreta, E. 617(19) 623
Sekyia, H. 617(20) 623
Seligman, T.H. 538(129) 580
Sellers, P.V. 849(1) 849
Selzle, H.L. 416(34) 440 610—611(5) 615(12) 623 626(6b 14) 629(6 36) 630(36) 634(3) 645—646 682(38) 697
Semiclassical theory 522—523
Sension, R.J. 395(42 46) 399(42) 403
Sepulveda, M.A. 504(39) 514(65) 577—578 862—863(18) 868
Setser, D.W. 849(1) 849
Seyfried, V. 55(19) 60(37) 64(43) 76 79(5) 79
Shank, C.V. 60(36) 62(36) 76 146(16—17) 151—152(17) 178(17) 179
Shapiro, M. 48(1—2) 57(1) 75 215—216(1—3) 219(1 26) 221—223(27) 224(26—27) 249(53) 270(79) 270—272 274(1 10) 274 286(1 7 14) 287(16) 288(14) 291—292 295(1—2) 296(3—7) 297(2 5) 300(5—6) 300 302(2) 312 315(3) 319(3) 322 327(1—2) 339(1—2) 341 373(4 6 8) 374 381(2) 382 419(47—48) 440 505(44) 577 651 800(6—8) 801(10) 803(12) 804(15) 806
Sharpless, R.L. 791(8) 796
Shaw, J. 493(11) 510(11) 576
Shayegan, M. 315(2) 322
Sheeny, B. 286(11) 292
Shehadeh, R. 286(12) 292
Shen, Y.R. 338(34) 343
Shepelyansky, D.L. 583(1—2) 584(4) 584—585 584(6) 585
Shi, S. 48(5 7—8) 75 215(7 10) 218(7) 227(7) 270 274(3) 275 281(3) 281 286(2) 291 328(8) 339(8) 341 373(2) 373
Shibanov, A.N. 883(10) 886
Shida, T. 734(17) 741
Shil'nikov, L.P. 551(147) 581
Shimamura, I. 538—539(133) 580
Shnirelman, A.I. 505(45) 577
Shoemaker, D.P. 143(53) 180
Shore, B.W. 255(62) 272 423(54) 425(54) 441 855(8) 867
Sibert, III, E.L. 590
Sidorov, A.I. 189(8) 191
Sieniutycz, S. 239(43) 271
Sigel, M. 189—190(9) 191
Siglow, K. 435—436(89) 438(89) 442
Silbey, R.J. 465(1) 467(1) 490
Silver, dimers, NeNePo spectrum 112—114
Silver, trimer, NeNePo spectra 114—116
Simon, J.D. 394(30) 399(30) 402—403
Simons, B.D. 518(88) 519(92) 578—579
Sinai, Y.G. 516(75) 518(75) 578
Singh, H. 218(21) 268—269(76) 271—272 318(7) 322
Sinha, A. 327(3) 339(3) 341 373(6) 374
Sipes, C. 86(1) 87
Sisyphus effect 307
Sitja, G. 493(7) 526(116—117) 527(117) 528(119) 528(7) 575 580 597—598(3) 598
Skodje, R.T. 259(68) 272 538(132) 557(150) 571—572(132) 580—581
Skoje, R.T. 795(19) 797
Slanger, T.G. 791(8) 796
Slator, T. 321(14) 322
Sleva, E.T. 39—40 304(13) 312
Sloan, J.J. 849(1) 849
Smale horseshoes 552—555
Smale horseshoes, 565 568—569
Smale horseshoes, 563—565
Smale horseshoes, repeller 557—559
Smale, S. 552(148) 581
Small, G.J. 171(41) 180
Smilansky, U. 511(57) 519(91) 528(57) 577 579
Smith, A.M. 415(29) 417(29) 440
Smith, A.V. 57(24) 76 286(9) 292
Smith, B.C. 465(8) 467(8) 488(8) 490
Smith, E.W. 87 89(7)
Smith, III, A.B. 400(49) 403
Smith, J.M. 626(8) 629(8) 634(8) 645 668(8 17) 669(17) 681(17) 692(17) 697
Smith, M.A. 296(8) 300
Smith, S.C. 750(28) 784 843(35) 848
Smithey, D.T. 346(15) 371
Sobol, P.E. 705(17) 708
Sodium, highly rotating molecule, phase and amplitude imaging 803—805
Sodium, photodissociation 285—293
Sodium, photodissociation, comparison of experimental and theoretical yields 288—289
Sodium, photodissociation, experimental Na(3d) and Na(3p) emission 287—288
Sodium, photodissociation, incoherent interference control 290—291 293
Sodium, photodissociation, Na(3d) fluorescence for different frequencies 290—291
Sodium, photodissociation, product branching ratio 285—286
Sodium, potential energy curves 55—56
Sodium, potential energy curves, for excitations 52—53
Soelter, D. 765(56) 767(56) 785
Soep, B. 86(2) 87
Softley, T.P. 434(75) 441 610(4) 623 639(56) 646 668(2) 669(24) 670(28—29) 671(29) 672(29—30) 675(2 33) 684—685(24) 687(43—45) 688(43 45) 689(43) 691(47) 696(50) 697—698 707(35) 708
Sokol, D.W. 584(5) 585
Sokolov, V.V. 541(140) 580
Solina, S.A.B. 465(1—4) 467(1 3) 476(2) 488(3—4) 490 536(125) 580
Solvation, coherence in 14—16
Solvation, dynamics, ultrafast component 173
Solvay conferences 4
Solvent dynamics, RRKM theory of clusters and 391—408
Solvent dynamics, RRKM theory of clusters and, microcanonical 395—399
Solvent dynamics, RRKM theory of clusters and, one-coordinate type treatment 395
Solvent dynamics, RRKM theory of clusters and, rate constant 398—399
Solvent dynamics, RRKM theory of clusters and, saddle-point avoidance 407
Solvent dynamics, RRKM theory of clusters and, slow and fast coordinates 406
Solvent dynamics, RRKM theory of clusters and, vibrational assistance treatment 395—399
Solvent dynamics, survey of developments 391—392
Solvent, components, structure and function 405
Solvent, role in frans-stilbene photoisomerization 456
Solvent, viscosity, effects on protein dynamics 405
Sommerer, G. 114—115(9) 124—125(22) 131 657(1) 657
Sommers, H.-J. 519(101) 579
Song, T.T. 876(6) 884(6) 886
Sorensen, L.B. 405(1) 405
Sparpaglione, M. 394(35) 403
Spath, B.W. 865(22) 868
Specific rate constants, dissociation, adiabatic channels 832—835
Spectral rigidity 518
Spectroscopic effective Hamiltonian model 464—466
Spectroscopic effective Hamiltonian model, anharmonic resonances 466—467 473 476
Spectroscopic effective Hamiltonian model, Darling — Dennison resonance 473—475
Spectroscopic effective Hamiltonian model, eigenstates 469
Spectroscopic effective Hamiltonian model, IVR 473—474
Spectroscopic effective Hamiltonian model, matrices 476
Spectroscopic effective Hamiltonian model, survival and transfer probabilities 479—484
Spectroscopic effective Hamiltonian model, ZOBS survival probability 476
Sprik, M. 394(33) 403
Squier, J. 59(34) 76
Srednicki, M. 505(46) 577
Stability matrix 387—388
Stace, A.J. 849(1) 849
Staemmler, V. 566(159) 573(159) 581
Stark effect 851
Stark level-crossing spectroscopy 541
Stark, G. 705(13) 707(13) 708
Statistical adiabatic channel model see "SACM"
Steckler, R. 259(71) 272
Steiger, A. 200(2) 201
Steil, G. 517(78) 578
Stein, J. 519(99) 579
Steiner, F. 517(78 81) 518(87) 578
Stephens, J.A. 706(25) 708 726(3) 726
Stephenson, T.A. 418(40) 440
Stepp, H. 413(20) 440
Steradiancy techniques 611—612
Stevens, W.J. 87 89(6)
Stickland, R.J. 726(1) 726
Stilbene, photoisomerization 84—85 456
Stilbene, photoisomerization in solution 404
Stilbene-hexane, energy-specific excited stilbene lifetimes 404
Stilbene-hexane, structure 408
Stimulated emission pumping, DCO 747—749
Stimulated emission pumping, HCP 484—488
Stimulated emission pumping, STIRAP 444
Stock, G. 201(16) 202 868(9) 869
Stoeck, C. 747(16) 748—749(16—17) 749(17) 751(16—17) 761(16) 768(17) 769(16—17) 770(16—17) 771(17) 783
Stoeckel, F. 521(111) 528(111) 579
Stoecklin, T.S. 820(4) 847
Stoeckmann, H.-M. 519(99) 579
Stoffregen, U. 519(99) 579
Stohner, J. 454(3) 455
Stolow, A. 296(8) 300 668(7) 682(7) 697
Stolte, S. 730(2) 741
Stolz, H. 346(16) 361(16) 371
Stranges, D. 86(2) 87
Stratt, R. 145(11) 172(11) 179
Stratt, R.M. 145(12—13) 172(12—13) 173(13) 176(12—13) 179 181(1) 181
Stretching perturbations, asymmetric 555—556 559
Strickland, D. 374(1) 376(1) 377
Stuchebrukhov, A.A. 451(1) 451 454(1) 454
Stuckelberg — Landau — Zener theory 208
Stumpf, M. 486(16) 490 746(8) 747(34) 748—749(17) 751(17 32—37) 752(32—33 38) 753(32 34) 754(32 34) 756(32) 758(34 36—37) 760(34) 761(32—33) 762(8) 763(33) 764—767(32) 768(17) 769(17 38) 770(17) 771(8 17) 772(34) 774(34 36) 775(36) 776—781(37) 783—784 786(34) 812(4) 812 815(1) 815
Sturrus, W.G. 705(17—20) 708
Su, S.G. 394(30) 399(30) 403
Su, T. 820(1) 828—830(1) 847
Subbotin, M.V. 185(4) 189(4) 191
Sudarshan, E.C.G. 238(37) 271
Suhm, M.A. 201(17) 202
Sumi — Marcus treatment 394
Sumi, H. 393—394(20) 395(40) 399(40) 402—403 406(1) 406
Sun, Y.-P. 395(41) 400(41) 403
Sundberg, R.L. 493(3) 575
Sundstroem, V. 146(19) 152(19) 160(19) 179
Sung, J.P. 849(1) 849
Suominen, K-A. 4(12) 43
Sussmann, R. 410(5—6) 415(29) 416(30—31) 417(29) 420(5—6 30) 424—425(6) 427(6) 428(6 30) 431(30) 433(69—70) 439—441
Sutcliffe, E. 595(1—2) 595
Suter, H.U. 746(8) 765(8) 767(58) 778(8) 783 785 794(18a) 797
Suzuki, T. 422(53) 441
Svelto, O. 61(39) 76
Swamy, K.N. 750(22) 784
Swanson, J.A. 393(16) 402
Sweetser, J. 800(3) 806
Ðåêëàìà