Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)
Àííîòàöèÿ: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.
The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:
Femtochemistry: chemical reaction dynamics and their control Coherent control with femtosecond laser pulses Femtosecond chemical dynamics in condensed phases Control of quantum many-body dynamics Experimental observation of laser control Solvent dynamics and RRKM theory of clusters High-resolution spectroscopy and intramolecular dynamics Molecular Rydberg states and ZEKE spectroscopy Transition-state spectroscopy and photodissociation Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.
The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.
Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.
The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.
An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.
From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 945
Äîáàâëåíà â êàòàëîã: 11.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Brandon, J. 794(18a 18b) 797
Brandon, J.T. 767(58) 785
Brandrauk, A.D. 328(11) 339(11) 342
Brauman, J.I. 732(14) 741
Braun, A.M. 279(2) 280
Brechignac, C. 103(3) 129(3) 131
Breen, J.J. 41
Breton, J. 146(15) 160(15) 179 794(13) 797
Breuer, H.P. 328—329(19) 335—336(19) 342
Brevet, P.F. 434(81) 441
Brickmann, J. 519(94) 579
Brillouin light-scattering spectroscopy 193
Brinkman, H.C. 393(9) 401
Brody parameter 775
Brody, T.A. 505(44) 577 772(67) 785
Broers, B. 59(31) 76
Brown, F.B. 259(71) 272
Brown, S.S. 327(3) 339(3) 341
Broyer, M. 68(50) 72(50 53) 73(53) 77 102(1—2) 103(1) 121(19) 122(2) 131 133(2) 135 135(2) 203(7) 203—204 434(81) 441
Brucker, G.A. 86(2) 87
Brumer — Shapiro method 219—226 276—277
Brumer — Shapiro method, branching ratio for formation of products 221
Brumer — Shapiro method, key element 283
Brumer — Shapiro method, molecule irradiated with two electromagnetic fields 220
Brumer — Shapiro method, probability of forming a product molecule 220—221
Brumer — Shapiro method, Schroedinger equation, eigenstate solutions 219
Brumer — Shapiro method, variants 224
Brumer, P. 48(1—2) 57(1) 75 215—216(1—3) 219(1 26) 221—223(27) 224(26—27) 249(53) 270(79) 270—272 274(1) 274 286(1 7 14) 287(16) 288(14) 291—292 295(1—2) 296(3—7) 297(2 5) 300(5—6) 300 302(2) 312 315(3) 319(3) 322 327(2) 339(2) 341 373(4 8) 374 381(2) 382 388 419(47—48) 440 505(44) 518(86) 577—578 862(19) 868
Brundle, C.R. 609(2) 616(2) 623
Brupbacher, Th. 416(36) 440
Bubble formation, on Rydberg state excitation 711—718
Bubble formation, on Rydberg state excitation, cage radius 715
Buch, V. 868(5) 868
Buchanan, M. 270(80) 273 286(10) 292
Buchleitner, A. 542(142) 580
Buehler, B. 52(18) 63(41) 65(18) 76
Buerger, H. 453(5) 453
Bullough, P.A. 157(32) 180
Burak, I. 749(19) 765(19) 767(19) 783
Burghardt, I. 493—494(10) 495(14) 497(14) 500—501(14) 504(14) 510(14) 514(14) 521(14) 524(14) 526—527(14) 529(14) 534(14) 541(14) 542(10 14) 544—546(10) 548(146) 553—556(10) 554(10 14 146) 555(10) 556(10 14) 558(10 14) 558(10) 566(146) 570(14 146) 576 581 772(64) 785 816(3) 816
Burke, P.G. 538—539(133) 580
Burns, M.J. 39
Butler, L.J. 730(3) 741
Bylicki, F. 521(111) 528(111) 579
Cabana, A. 485(15) 490
Cabrol, O. 57(27) 76
CaF, quantum defect/frame transformation 720
Cahuzac, Ph. 103(3) 129(3) 131
Calef, D.F. 393(13) 402
Callegari, C. 626(30) 646
Callomon, J.H. 412(18) 440
Campargue, A. 521(111) 528(111) 579
Campbell, E.E.B. 626(23) 645
Campolieti, G. 862(19) 868
Carbon clusters, delayed detachment rate, excess energy dependence 656
Carbon dioxide, Smale horseshoe 565 568—569
Carbon dioxide, subcritical antipitchfork bifurcation 548—550
Carbon dioxide, ultrashort-lived resonances 565—571
Carbon ions, electron emission time profiles 654
Carbon ions, experimental and calculated emission rate 655
Carbon ions, resonant multiphoton detachment spectra 653 655
Carbon ions, time-of-flight photoelectron spectra 654
Carbon monoxide, state-selected ions 672—675
Carlier, F. 103(3) 129(3) 131
Carlson, R.J. 48(10) 57(21) 59(10 21) 75—76 217(18) 218(19) 242(18) 253(61) 271—272 303(11) 312
Carmeli, B. 393(9) 401
Carrier, S.F. 626(32) 646
Carrington, A. 723(1) 723
Carrington, Jr., T. 536(124) 580
Carrington, T. 201(11) 202
Carruthers, P. 512(59) 578
Carter, E.A. 142(9) 145(9) 163(9) 173(9) 179
Casati, G. 518(89) 519(89 96) 578—579 583(1—3) 584(4—6) 584—585
Casavecchia, P. 86(2) 87
Castleman, Jr., A.W. 4(3) 43
Castner, Jr., E.W. 173(47) 180 394(38) 403
Cederbaum, L.S. 200(9) 201(9) 201—202 493(5) 510(53) 518(5) 528(5) 537(5) 540(5) 575 577 772(65) 785 868(7) 868—869
Ceijan, C. 565(154) 569(154) 581 855(8) 867
Centrifugal energy term 823
Cespiva, L. 129—130(25) 132
CH, acetylenic stretching 454
Chachisvilis, M. 146(19) 152(19) 160(19) 179
Chambaud, G. 528(119) 580
Chan, C.K. 221—224(27) 271
Chandler, D. 163(36) 180 394(33) 403
Chandler, D.C. 394(33) 403
Chandrasekharan, V. 711—712(3)
Chang, Y.J. 173(47) 180 394(38) 403
Chaos, signatures of 388
Chapman, S. 656(1) 657
Charalambidis, D. 286(15) 292
Charge transfer reactions, femtochemistry 30—34
Charge-dipole potential 821 832—833 848
Charutz, D.M. 698
Charvat, A. 521(111) 528(111) 579
Chatfield, D.C. 493(9) 538(9) 575
Che, J. 59(35) 76 273(1) 274(8) 274—275 346(7) 370
Chebotayev, V.P. 420(50) 423—424(50) 441
Chekalin, S.V. 878(8) 884(11) 886
Chelkowski, S. 48(11) 65(11) 76 328(11) 339(11) 342
Chemical bonding 91—92
Chen, C. 57(22—24) 76 286(4 9) 292
Chen, G. 91(1) 91 466(10) 489(10) 490
Chen, P.Y. 41—42
Chen, Y. 218(22) 268—269(77) 271—272 518(85) 578 642—643(58) 646
Chen, Y.-T. 465(5) 484(5) 485(12) 486—487(5) 488(5 12) 489(5) 490
Chen, Z. 286(14) 287(16) 288(14) 292 419(48) 440
Chenevier, M. 521(111) 528(111) 579
Cheng, Zh. 516(75) 518(75) 578
Chergui, M. 4(1) 9(1) 25(1) 34(1) 43 664(1) 664 711(3) 712(3 6—9) 713(10—11) 714(14) 714—715 717—718
Chernyak, V. 91(2) 91—92 200(1) 200 386(2) 387 514(68) 578
Cheshnovsky, O. 646
Chesnavich, W.J. 820(1) 828—830(1) 847
Chevaleyre, J. 102—103(1) 131 434(81) 441
Chewter, L.A. 617—618(17) 623
Child, M.S. 208(1) 208 498(25) 544(25) 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 576 581 596(1) 598 634(50) 646 656(1) 657 794(17) 797
Chin, S.L. 374(1) 376(1) 377
Chiral molecules, symmetries 377—379
Chirikov, B. 518—519(89) 578
Chirikov, B.V. 583(1—3) 584—585
Chirped pulses, phonon squeezing 382—384
Cho, M. 145(11 13) 169(38—39) 171(39) 172(11 13 44—45) 173(13) 176(11 13) 179—180 394(30) 403
Cho, S.-W. 750(22) 784
Choi, H. 816 816(4)
Chong, S.H. 41 85 391(1) 400—401(1) 401
Chromophore, femtosecond multiphoton ionization 877—880
Chromophore, optical transition frequency 160
Chronocyclic representation see "Wigner wavepackets"
Chudinov, A.N. 286(8) 292
Chudinov, G.E. 394(30) 399(30) 403
Chupka, W.A. 434(82 84) 437(82 84) 441 629(37) 639(37) 646 668(11) 679(37) 681—682(11) 697 699 702(2) 707
Cina, J. 204(1) 204
Cina, J.A. 57(21) 59(21) 76 150(27) 179 217(18) 241(18) 271 303(11) 312
Ciordas-Ciurdariu, C. 360(26) 371
Clark, J.W. 247(46—50) 248(45 47) 268(48) 271—272
Clary, D.C. 86(2) 87 668(20) 697 820(4) 847
Clusters, boiling off solvent molecules 404
Clusters, coherence in 14 16
Cogdell, R.J. 158(33) 180
Cohen, L. 346(13) 371
Cohen, M.J. 497(20) 576
Cohen, S.J. 465(1) 467(1) 490
Cohen-Tannoudji, C. 745(2) 783
Cohen-Tannoudji, C.N. 302(9—10) 305(9—10) 307(9—10) 312
Coherence 7—9
Coherence in electron diffraction 18—20
Coherence in ionization, exploiting 450—451
Coherence in orientation 11—13
Coherence in reactions 14
Coherence in solvation 14—16
Coherence in states of isolated molecules 9 11
Coherence transfer 148—149 195
Coherence, control by phase-coherent multiple pulses 9—10
Coherence, wavepacket control 14—18
Coherent control 47—97
Coherent control, "bubble-type" mechanism 82
Coherent control, above-threshold ionization process 77
Coherent control, bimolecular scattering 295—300
Coherent control, intense laser pulses 65—74
Coherent control, intense laser pulses, diabetic and adiabatic dressed states 68 71
Coherent control, intense laser pulses, direct ionization of 68—70
Coherent control, intense laser pulses, multiphoton ionization of 66
Coherent control, intense laser pulses, Rabi-type cycles 65
Coherent control, intense laser pulses, signal drop for zero pump-probe delay 66 68 72
Coherent control, intense laser pulses, strongly attenuated pulses 69 71 73
Coherent control, laboratory experiment 49—51
Coherent control, laser pulse duration effect 63—65
Coherent control, linear superposition of degenerate, continuum eigenstates 296
Coherent control, localized vibrational motion 95
Coherent control, macroscopic motions 92
Coherent control, multiphoton ionization pathways 79
Coherent control, phase-modulated femtosecond laser pulses 59—63
Coherent control, phase-sensitive pump-probe experiments 57—59
Coherent control, practical applications 278
Coherent control, primary aim 286
Coherent control, pump-probe schemes 52—57
Coherent control, strategies 78—79
Coherent control, two-photon ionization spectroscopy 81
Coherent ion dip spectroscopy 419 425—428 438—439 445
Coherent ion dip spectroscopy, experimental procedure 428 430
Coherent ion dip spectroscopy, experimental setup 428—429
Coherent ion dip spectroscopy, spectra 430—433
Coherent state 198—200
Coherent transients 7—8
Coherent vibrational motion, negative ions 313
Colin de Verdiere, Y. 505(45) 577
Colin, R. 529(122) 580
Colliding pair, kinetic energy, optical control 296—300
Colliding pulse modelocked ring dye laser 49 51
Collinear configuration 542—543
Collinear model, dissociation 568—570
Collings, B.A. 296(8) 300 626(25) 645
Collision energy, resolution 679—680
Collisions, production of desired superposition states 297
Colson, S.D. 619—620(22—23) 623 668(6) 697
Coltrin, M.E. 870(1) 870
Combariza, J.E. 79(7) 79—80 274(5) 275 328(14 17) 329(14 27) 330(14) 335(14 17) 336(14) 339(14 17) 341(14 17 27) 342 373(3) 374 375(3) 377
Complex liquids, relaxation time 194
Condensed phases 141—178
Condensed phases, constant-temperature 391—392
Condensed phases, fluorescence Stokes shift function 143—145
Condensed phases, system-bath interactions 160—175
Condensed phases, system-bath interactions, echo spectroscopies 165—175
Condensed phases, system-bath interactions, line shape function 160—164
Condensed phases, vibrational dynamics 148—160
Condensed phases, vibrational dynamics, experimental studies 152—160
Condensed phases, vibrational dynamics, multilevel Redfield theory 148—152
Cong, P. 41 44
Cononica, S.- 400(50) 403
Continetti, R.E. 730(4) 733(16) 737(19) 739(16) 741—742
Continuous-wave interference control, one photon-three photon 223—224
Continuous-wave spectroscopy 122
Control methodology 895—896
Cook, R.J. 189(7) 191
Cooling, nonevaporative 305 307—312
Cooling, using shaped pulses 308
Cooper, J. 87 89(7)
Cooper, J.W. 793(12a) 797
Coordinate probability distributions 152—153
Cordes, E. 619(24) 623
Corey, G.C. 201(11) 202
Coriolis coupling 720—721
Coriolis interaction 486—488
Corkum, P. 456(6) 456
Corkum, P.B. 48(11) 65(11) 76 270(80) 273 286(3 10) 292 374(1) 376(1) 377
Correlation function, expression, spontaneous light emission 347—353
Correlation function, four-point, fluorescence spectra 365—368
Coulomb explosion 77—78
Coulomb interaction, between two changes 634—635
Coulomb systems, Heisenberg time 521
Coulston, G.W. 328(5) 339(5) 341 424(60) 425(60 63) 441
Coupling, separation of intrastate and interstate 442
Courtney, S.H. 400(50) 403
Coy, S.L. 465(2) 468(11) 476(2) 484(11) 489(11) 490
Cozzens, R.F. 279(1) 280
CPT symmetry violation 377 379
Crim, F.F. 79(7) 79—80 274(11) 275 327(3) 339(3) 341 373(6) 374 747(11—12) 768(60) 783
Cukier, R.J. 394(24) 402
Culot, F. 541(140) 580
Cumulative reaction probability 853—854 857
Cumulative reaction probability, + OH 859 861
Cumulative reaction probability, coordinate space representation 862
Cumulative reaction probability, H + 859—860
Cumulative reaction probability, hybrid representation 864—865
Cumulative reaction probability, semiclassical approximation 859—866
Curvature distribution 519
Curve-crossing processes 177
Cvitanovic, P. 503(37) 512—513(60) 514(64) 577—578
Cycle expansion 558
Cyclobutone-ethylene system, addition/cleavage reaction 26—29
Cyr, D.R. 730(4) 733(16) 739(16) 741
Czege, J. 405(2) 406
DABCO, experimental lifetimes 629—630
Dabrowski 721
Dabrowski, I. 705(14—16) 708
Dahleh, M. 48(6 9) 75 248—249(51) 272 274(3) 275 302(3) 312 315(1) 316(1 4) 319(1) 322 328(8) 339(8) 341 346(5) 370 373(2) 373
Dahleh, M.A. 249—250(54) 272
Dahleth, M.A. 215(8—9) 227(8) 236(8—9) 270
Dai, H.-L. 747(15) 783
Dalton, B.J. 286(15) 292
Dam, N. 423(58) 441
Daniel, C. 79(6—7) 79—80 328(17) 335(17) 339(17) 341(17) 342
Dantus, M. 41—42 52(16) 76 86(3) 87 89(3—4) 90(6) 90 185(2) 191(2) 191 320(12) 322 561(151) 566(151) 581 799(2) 806
Darling — Dennison resonance 473—475 591
Darling — Dennison resonance, between symmetric and antisymmetric stretch 598 600
Darling, B.T. 431(66) 441
Dashevskaya, E.I. 846(39) 848
Date, G. 517(80) 578
Davies, G.J. 173(48) 180
Davies, K.T.R. 546(144) 581
Davis, E.B. 238(39) 271
Davis, H.L. 862—863(17) 867—868
Davis, M.J. 557(150) 581 642—643(61) 646
DCO, dissociation dynamics 768—772
DCO, excitation energies 769—770
DCO, potential-energy surfaces 769
DCO, stimulated emission pumping 747—749
DCO, wave functions, contour plots 769 771
De Aguiar, M.A.M. 546(144) 581
de Boeij, W.P. 348(21) 371
de Frutos, M. 103(3) 129(3) 131
De Silvestri, S. 61(39) 76
de Vivie-Riedle, R. 79(6 8—9) 79—80 111(8) 117(13 15) 118(13) 120—121(15) 122(13 15) 124(8) 131 132(1) 133(4 6) 134(1 135(1 6) 135 136(1 4) 137 196(1—2) 196 197(1) 200(6) 201 202(1 3) 203(4—5) 203
DeBruijn, D.P. 732(15) 741
Dehmer, J.L. 459(1) 459 706(27—29) 708
Dehmer, P.M. 459(1) 459 706(27—29) 708
Delacretaz, G. 68(50) 72(50—51 53) 73(53) 77 102(2) 117(12) 122(2 20) 131 133(3) 135(3) 135 203(8) 204
Delande, D. 510(50) 519(98) 542(142) 557(50) 577 579—580
Delon, A. 493(6) 518(6) 521(111) 528(111) 537(6) 540(6) 575 579
Delone, N.B. 419(46) 423(46) 440
DeLong, K.W. 59(34) 76
Delos, J.B. 493(11) 510(11 51) 537(6) 576—577
Delta function 855
Demiralp, M. 249—250(56) 272 317(5) 318(8) 320(8) 322
Demtroeder, W. 493(5) 518(5) 528(5) 537(5) 540(5) 575
Dennison, D.M. 431(66) 441
Dense fluids, coherence and solvation 14—15
Density matrix 805
Density matrix, equation, coherent population dynamics 423—424
Density operator, microcanonical 854 857
Ðåêëàìà