Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Dephasing      7—9 171 240
Dephasing, fast      374
Dephasing, pure      206
Dephasing, separating homogeneous from inhomogeneous      8
Deshmukh, S.      732(13) 737(13) 741
Desouter-Lecomte, M.      541(140) 580 637(56) 646
Dexheimer, S.L.      146(16) 179
Dhar, L.      346(3) 362(3) 370
Diatomic molecules, NeNePo spectroscopy      111—114
Diatomic molecules, vibrational motion      524—525
Dichloroanthracene, decay lifetime      628
Dietrich, H.-J.      629(35) 646
Dietrich, P.      286(3) 292 374(1) 376(1) 377 456(6) 456
Dietz, B.      511(57) 528(57) 577
Dietz, K.      328—329(19) 335—336(19) 339(19) 342
Dietz, T.      339(35) 343
Dikshit, S.N.      158(34) 180
Dill, D.      706(22) 708
Dilution, external perturbations as source of      644
Dilution, versus trapping, high Rydberg states      639—644
DiMauro, L.F.      286(11) 292 731(8) 733—734(8) 741
Dimer-hopping model      158—159
Dimers, rotational temperature      137
Dipole force      185—186
Dipole moment, instantaneous      303—304
Dipole operator, multitime correlation function      209—210
Diradicals, role in cleavage, closure, and rotation      26—27 29
Direct overtone pumping      747
Dispersed fluorescence spectrum, $CS_{2}$      597—598
Dispersed fluorescence spectrum, acetylene      465—468 602—603
Dispersed fluorescence spectrum, early-time dynamics of ZOBS      472—473
Dispersed fluorescence spectrum, extracting information      469—470
Dispersed fluorescence spectrum, unzipped polyads      470—472
Dissipation in competition with vibrational transitions      336—337
Dissipation, role in quantum mechanics      204
Dissipation, source      343
Dissociation      see also "HCO dissociation "Unimolecular
Dissociation on potentials with saddle, bifurcation, associated with transition to chaos      545—552
Dissociation on potentials with saddle, classical properties      541—545
Dissociation on potentials with saddle, semiclassical quantization      555—561
Dissociation on potentials with saddle, Smale horseshoes      552—555
Dissociation rate, as function of energy      751
Dissociation rate, RRKM result      632
Dissociation rate, unimolecular      539—541
Dissociation, above-threshold, vibrational transitions      336—338
Dissociation, HCO, rotational state distributions      749—750
Dissociation, molecular, spectra      789—790
Dissociation, polyatomic molecules      632
Dissociation, specific rate constants, adiabatic channels      832—835
Dissociation, ultrafast      574—575
Dissociative molecules, resonance constants      566
Distortion constants, rotational and centrifugal      809—810
Diu, B.      745(2) 783
DiVincenzo, D.P.      302(6) 312
Dixon, R.N.      726(1) 726 754(40) 784
DNA, models, tautomerization reactions      34—37
DNA, photoinduced tautomerization of base pairs      85
Doanyy, F.E.      400(48) 403
Dobbyn, A.J.      80(1) 80 746(8) 747(34) 751(34—37) 752(38) 753—754(34) 755(37) 758(34 36—37) 760(34) 762(8) 767(59) 769(38) 771(8) 772(34) 774(34 36) 775(36) 776—781(37) 783—785 786(34) 812(4) 812 815(1) 815
Dohle, M.      329(26) 331(26) 340—341(26) 342 377(1) 379
Domcke, W.      201(12) 202 510(53) 577 868(10) 869
Donaldson, D.J.      341(25) 342 849(1) 849
Dong, Y.      394(27) 399(27) 402
Donhal, A.      85(1) 85
Doolen, R.      394(30) 399(30) 402
Doom, S.K.      394(27) 399(27) 402
Doorway wavepacket      353—355 357
Doorway wavepacket, phase-space, fluorescence      368—369
Doorway wavepacket, phase-space, pump-probe signals      369—370
Dopfer, O.      619(22 24) 620(22) 623 668(6) 697
Doppler broadening, eliminating      410
Dorfman, J.R.      502(35) 543—544(35) 577
Doron, E.      511(57) 528(57) 577
Double-well, barrierless, population decay      151—152
Doublet, M.L.      573(161) 581
Doubly-many-body-expansion surface      572
Doucet, Y.      485(15) 490
Douglas, A.E.      412(14) 440
Douhal, A.      42
Doyla, Z.E.      328(13) 332(13) 334(13) 339(13) 342
Dreschsler, G.      620(25) 623
Dressier, K.      704(12) 708
Drullinger, R.E.      87 89(7)
Du, M.      57(21) 59(21) 76 142(3) 145(3) 172(44—45) 173(3) 179—180 217(18) 242(18) 271 303(11) 312 394(31) 403
Du, N.Y.      706(24) 708
Dubernet, M.L.      820(9) 843(9) 847
Dudko, S.A.      394(21) 402
Duebal, H.R.      454—455(1) 455 587(1) 588
Dugourd, Ph.      102—103(1) 121(19) 131 132(2) 135(2) 135 203(7) 203—204
Dunham expansion      496—497
Dunham expansion, diagonal and nondiagonal parts      531
Dunham expansion, domain of validity      497 555
Dunham expansion, without anharmonic resonances      529
Dunlop, J.R.      759(42) 761(42 49) 763(42) 784
Dunn, H.K.      346(8) 370
Dunn, T.J.      800(3—4) 806
Dunning, F.B.      434(73) 441
Dupont, E.      270(80) 273 286(10) 292
Duppen, K.      178(52) 180 348(19) 371
Dupuis, M.      731(6) 741
Dynamics-inverse scattering duality      267—269
Dynamics-inverse scattering duality, Schroedinger equation      268—269
Dyson, F.J.      516(75) 518(75) 578
Dzelzkans, L.S.      849(1) 849
Ebata, T.      422(53) 441 674(32) 697
Eberly, J.H.      304(12) 312
Echo spectroscopies      165—175
Echo spectroscopies, dephasing      171
Echo spectroscopies, experimental setup      165
Echo spectroscopies, instantaneous normal modes      172 181—182
Echo spectroscopies, three-pulse echo      166—169
Echo spectroscopies, three-pulse echo, peak shift data      170—171
Eckart potential barrier      865
Eckhardt, B.      501(34) 503(37) 504(40) 512—513(60) 570(40) 573(160) 577—578 581
Eckmann, J.-P.      514(64) 578
Effective Hamiltonian, diagonalizing      640 642
Effective Hamiltonian, time evolution of high Rydberg states      636—639
Egorov, S.E.      883(10) 886
Ehlich, R.      626(31) 646
Eigen reaction probabilities      857—858
Eigenfunctions, averages, periodic-orbit expression      504—505
Eigenfunctions, Berry's conjecture      505
Eigenfunctions, Wigner transforms      508
Eigenstates, high Rydberg states      639
Eigenstates, spectrum, extracting information from      469
Einstein A-coefficient      801
Einstein B coefficient, generalized      303—304
Eisenbud, L.      538—539(133) 580
Eisenstein, L.      405(1—2) 405—406
Eisenthal, K.B.      393(10) 400(10) 401
El-Sayed, M.A.      4(9) 43 411(8) 439
Electron beam, coherence length      192
Electron beam, focusing      187—189 191
Electron beam, monochromaticity      191—192
Electron diffraction, coherence      18—20
Electron transfer reactions in solution      400
Electron transfer reactions, adiabatic elimination of fast variables      393—394
Electron transfer reactions, barrierless      394
Electron transfer reactions, dielectric dispersion of solvent      394—395
Electron transfer reactions, femtochemistry      30—34
Electron transfer reactions, linear response approximation      406—407
Electron transfer reactions, Sumi — Marcus treatment      394
Electron velocity, normal component, variation      190
Electron, free, polarizability in optical field      186
Electron, reflection by evanescent laser wave      189—190
Electron-phonon coupling      656
Electronic coherence      91
Electronic states, ground, nuclear wavepacket, "hole burning"      195—198
Electronic states, pair, field-matter interactions      145—146
Electronic transition frequency correlation function, normalized      174—175
Eliason, M.A.      835(23) 847
Elimination, two-center      29—30
Ellert, Ch.      129(24) 132
Elliott, D.S.      57(22—24) 76 286(4 9 12) 292
Enantiomers, tunneling between      381
Energy difference operator      162
Energy relaxation      193—194
Energy shell      507
Energy spectrum, bounded systems      514—519
Energy spectrum, bounded systems, average level density      515—516
Energy spectrum, bounded systems, beyond Heisenberg time      520
Energy spectrum, bounded systems, periodic-orbit structures      516
Energy spectrum, bounded systems, scale below mean spacing      516—519
Energy spectrum, irregular, mechanisms      537—538
Energy spectrum, open systems      538—539
Energy, Gaussian distribution, initial wavepacket      522
Energy, levels, curvature statistics      519—520
Engel, V.      60—61(38) 64(42) 65(49) 67(49) 76—77 81(1) 81 196(6) 196 274(10) 275 327(1) 339(1) 341 373(6) 374 565(153) 566(159) 570(153) 573(159—160) 581 768(61) 785
Entropy barrier      517
Equilibrium points, quantization      556—557
Equilibrium points, quantization, isolated      496—498
Ernst, W.E.      72(52) 77 691(47) 698
Escape rate      514
Escape-time function      544
Etchepare, J.      173(47) 180
Evans, M.      173(48) 180
Even, U.      416(35) 419(45) 434(78 83 85) 437(83 85) 440—442 626(1 4 16 18—19) 628(4 18) 629(1) 634(1) 644(1) 645 652 668(14) 681—682(14) 697 702(3) 707 724(1) 724
Evolution operator      494
Ewing, G.E.      418(39) 440
Excitation pathways, phase control      274
Eyler, E.E.      634(49) 646
Eyring, H.      835(23) 847
Ezra, G.S.      497(21) 521(110) 526(110) 576 579 590
Fabre, C.      382(10) 385
Fabri — Perot etalon      361
Fan, H.-Y.      382(13 15) 385
Fang, J.-Y.      514(66) 578
Fano profile, OCS, VUV-PHOFEX spectrum      793—795 797
Fano, U.      686(40) 698 703(7) 708 793(12a 12b) 797
Fantucci, P.      103(4) 114—115(10) 117(10 16—17) 129—130(25) 131—132
Farantos, S.C.      484(13) 490
Fast Fourier transform propagation techniques      200
Faucher, O.      286(15) 292
Fayet, P.      122(20) 131
Fedoriuk, M.V.      861(15) 867
Feedback in molecular control design      316—318
Feedback, quantum dynamics control      315—325
Feedback, quantum dynamics control, effective Schroedinger equation      317—318
Feedback, quantum dynamics control, Heisenberg's equation of motion      320
Feedback, quantum dynamics control, inversion of molecular dynamics      320—321 323—324
Feedback, quantum dynamics control, laboratory control      318—320
Feedback, quantum dynamics control, nonlinear Schroedinger equation      318 320 322
Feedback, quantum dynamics control, tracking control      318
Feezel, L.L.      849(1) 849
Feit, M.D.      200(2) 201
Feldstein, M.J.      348(20) 371
Felker, P.M.      12(13) 39—41 43 412(12) 439
Femtochemistry      3—45 892 see
Femtochemistry, barrier reactions      22—25
Femtochemistry, complex organic reactions      26—30
Femtochemistry, electron transfer reactions      30—34
Femtochemistry, ground-state dynamics      25—27
Femtochemistry, key concepts      6
Femtochemistry, reaction dynamics      4—5
Femtochemistry, reactions studied      37—38
Femtochemistry, resonances in unimolecular reactions      20—22
Femtochemistry, tautomerization reactions of DNA models      34—37
Femtochemistry, two-center elimination      29—30
Femtosecond laser pulses, phase-modulated      59—63
Femtosecond NeNePo      658
Femtosecond transition-state spectroscopy      20
Femtospectrochemistry      873—887
Femtospectrochemistry, femtosecond multiphoton ionization of chromophores      877—880
Femtospectrochemistry, laser photoion microscopy      883—884
Femtospectrochemistry, laser resonance photoelectron spectromicroscopy      880—883
Femtospectrochemistry, principal idea      875—877
Fermi bifurcation, $CS_{2}$      527
Fermi resonance      591
Ferreira, L.F.A.      612(9) 623
Feshbach, H.      636(52) 642(52) 646
Feynman diagrams, $\tau > 0$      167—168
Feynman diagrams, double-sided      161—162
Feynman — Vernon — Hellwarth diagram      304—307
Field, J.E.      302(7) 312
Field, R.W.      412(10) 421(52) 439 441 465(1—5) 467(1 3) 476(2) 484(5) 485(12) 486(5) 487(5 18) 488(3—5 12) 488(3) 489(5) 490 493(3) 518(85) 529(122) 536(125) 575 578 580 707(34) 708 747(13 15) 783
Field-ion microscopy      884—885
Fielding, H.H.      670(28) 687(43—45) 688(43 45) 689(43) 697—698 707(35—36) 708
Filed-matter interactions, pair of electronic states      145—146
Fink, R.      767(59) 785
Fischer, I.      626(10) 629(10) 645 668(7) 682(7) 697 726(4) 726
Fischer, M.      279(3) 280
Fishman, S.      503(38) 504(40) 570(40) 577
Fitzcharles, M.S.      86(2) 87
Flannery, B.P.      332(30) 342
Fleck, Jr., J.A.      200(2) 201
Fleischhauer, M.      302(8) 312
Fleming, G.R.      57(21) 59(21) 76 94 96 142(3 4 7) 144(4) 145(3 4 7 11) 146(14 18 20) 147—148(22 24) 149(24) 150(22 24) 152(18 24 28) 153(29) 154(18 28—30) 155(28) 156(29) 157(18 158(18 34) 159(18) 160(24) 162—163(7) 164(37) 166(37) 168(37) 169(38—10) 171(39—40) 172(11 37 44) 173(3—4 7 37 174—175(37) 176(11) 177(22) 179—180 195 217(18) 241(18) 271 282 303(11) 312 346(4) 370 393(11) 394(25—26 31 34) 400(50) 401—403
Floethmann, H.      751(33) 752(33 38) 761(33) 763(33) 769(38) 784
Flores, J.      505(44) 577 772(67) 785
Fluctuation-dissipation theorem      386
Fluegge, S.      332(31) 343
Fluorescence, anisotropy function      157—158
Fluorescence, four-point correlation function      365—368
Fluorescence, phase-space doorway-window wavepackets      368—369
Fluorescence, rate      801—802
Fluorescence, Stokes shift function      143—145 162—163
Fluorescence, Stokes shift function, correlation with line-broadening function      164
Fluorescence, time-dependent $Na_{2}$ signal      803—804
Foltin, M.      626(26) 645
Fonseca, T.      393(16) 394(32) 402—403
Ford, J.      583(3) 585
Forst, W.      515(72) 539(72) 578 750(27) 784
Fotakis, C.      286(15) 292
Four-wave mixing, heterodyne-detected, wigner wavepackets extension to      358—359
Fourier transform, windowed      521—522 601
Fourier — Laplace transform, response function      163
Fourkas, J.T.      346(3) 362(3) 370
Fragmentation model      127
Fragmentation reaction      220—221
Fragmentation, deconvolution      127—128
Fragmentation, rate constants      821
Fragmentation, rates      128—129
Franck — Condon active normal modes, configuration space      469 589—590
Franck — Condon active vibrational modes      464—465
Franck — Condon bright state      464—465
Franck — Condon bright state, fractionation      470
Franck — Condon bright ZOBS      468—470
Franck — Condon bright ZOBS, survival probability      477
Franck — Condon mapping      767—768
Franck — Condon mapping, model      786—787
Franck — Condon principle      63
Franck — Condon region      325
Franck — Condon region, initial excitation in      457
Franck — Condon transition      227 230
Franck — Condon transition, squeezing and      382
Franck — Condon window      121 135—136
Frauenfelder, H.      405(1—2) 405—^06
Fredin, S.      647(1) 648 707(32) 708
Free radicals      see also "Vinoxy radical"
Free radicals, reactive      730
Free-rotor expression      833
Freed, K.F.      411(7) 439
Freer, A.A.      158(33) 180
Fremacle, F.      813(1) 813
French, J.B.      505(44) 577 772(67) 785
Frenkel, A.      511(57) 528(57) 577
Frensley, W.R.      513(62) 578
Frequency-resolved optical gating technique      346
Freund, R.W.      858(9) 867
Fried, L.E.      394(37) 403 497(21) 576 590
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå