Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Laser-induced transparency      302
Lauder, M.A.      286(15) 292
Lauritzen, B.      521(109) 579
Leahy, D.J.      730(4) 741
Leaird, D.E.      59(29—30) 76
Learning algorithm, laboratory feedback control      319
Lebowitz, J.L.      516(75) 518(75) 578
Lee, D.      146(54) 180
Lee, M.      400(49) 403
Lee, S.      794(14b) 797
Lee, S.-Y.      196(4) 196 382(18) 385 538—539(130) 580
Lee, Y.T.      434(86—87) 437(86—87) 442 626(17) 629(17) 634(17) 645 668(15) 681(15) 697 732(12) 737(12 18—19) 738(18) 741—742
Lefebvre-Brion, H.      487(18) 490 702(4) 707
Lefebvre-Brion, M.      412(10) 439
Lefevre, G.      647(1) 648 707(32) 708
Leforestier, C.      855(8) 867
Legnier, J.      103(3) 129(3) 131
Lehmann, K.      454(2) 455
Lehmann, K.K.      485(12) 488(12) 490
Leisher, T.      114—115(9) 131
Leisner, T.      626(27) 646 657(1) 657
Lemaitre, D.      465(7) 488(7) 490
Lester, Jr., W.A.      731(6) 741
Letokhov, V.S.      4(4) 43 79(7) 79—80 185(3—5) 189(4 8 10) 190(10) 327(1 3) 328(11) 339(1 3 11) 341 372(5) 420(50) 423—424(50) 441 451(1) 451 661(1—9) 662(1 8) 662 663(1—2) 663 874(1 3) 875(5) 876(7) 878(8) 880(9) 883(9—10) 884(11) 886
Levin, R.D.      731(10) 741
Levine, R.D.      95—96 153—154(29) 156(29) 157(31) 179—180 195 434(78 83 85) 437(83 85) 441—442 454—455(1) 455 457 519(94) 540(137) 579—580 588(5) 589 615(13) 623 626(3—4 20) 627(3c) 628(3c 4—5) 629(2) 631(45) 634(2—3 5 20 45a) 636(3c 5 45a 45b 45f 53) 637(53) 639(3b 3c 3d 45c) 640(45) 642(45b 53) 643(45b 45d) 645—646 649—652 656 659 668(14 18) 681—682(14 18) 691(18) 697—698 702(3) 707 724(1) 724 812(2) 812 813(1) 813
Levinger, N.E.      394(27 36) 399(27) 402—403
Lewerenz, M.      587(3) 588
Lewis, B.R.      794(15) 797
Lezius, M.      626(26) 645
Li, X.      57(26) 76 216(14—15) 223(15) 225(15) 270—271 286(6 13) 292 328(4) 339(4) 341 747—748(16) 751(16) 761(16) 769—770(16) 783
Li, Z.      146(21) 179 373(7) 374 514(66) 578
Lias, S.G.      731(10) 741
Lichtenberg, A.J.      496(19) 501(19) 509(19) 542—543(19) 546—547(19) 551(19) 576
Lie algebra      248
Lieberman, A.J.      496(19) 501(19) 509(19) 542—543(19) 546—547(19) 551(19) 576
Liebman, J.F.      731(10) 741
Lienau, C.      41—42
Lievin, J.      521(112) 529—531(112) 579 637(56) 646
Lifetime function      756 758—759
Lifshiz, E.M.      162(35) 180
Light emission, spontaneous, correlation function expression      347—353
Light emission, spontaneous, molecular density matrix expansion      350—351
Light, J.C.      565—566(152) 581 778(69) 785 859(12) 867
Likar, M.D.      327(3) 339(3) 341 373(6) 374
Lill, J.V.      859(12) 867
Lin, Q.      195
Lin, S.H.      610—611(5) 623
Lindblad, G.      238(36) 271
Lindner, R.      617(20) 619—620(22) 623 626(10) 629(10) 629(35) 645—646 726(4) 726
Line shape function      160—164
Lineau, C.      195
Lineberger, W.C.      732(14) 741
Linskens, A.F.      423(58) 441
Liouville operator      388
Liouville space diagram      350—351 366
Liouville — Von Neumann equation      238 309
Liouvillian eigenvalues      513
Liouvillian operator, quasiclassical regime      512—513
Lipert, R.J.      619—620(23) 623
Liquids, dynamics, very short time      193
Liquids, hard-sphere model      407—408
Little, D.D.      327(3) 339(3) 341
Littlejohn, R.G.      510(54) 529(54) 577 601
Littman, M.      315(2) 322
Liu, H.C.      270(80) 273 286(10) 292
Liu, Q.      41—42 56(20) 76 90(1) 90 328(10) 339—340(10) 341
Liu, S.      791—792(10) 795(10) 797
Liu, W.K.      39
Locked-dipole capture rate constant      826
Loerincz, A.      250(59) 252(59) 272 317(6) 319(10b) 322
Logan, D.E.      642(59) 646
Logvin, Yu.A.      274(5) 275 328—329(16) 332(16) 337(16) 339(16) 341(16) 342
Lohr, L.L.      490
Lombardi, M.      493(6) 518(6) 528(6) 537(6) 538(129) 540(6) 575 580
London — Eyring — Polanyi — Sato surface      565—567
Lopez-Delgado, R.      412(18) 440
Lorents, D.C.      791(8) 796
Lorquet, J.C.      541(140) 580
Los, J.      732(15) 741
Loudon, R.      382(3) 385 801(9) 806
Lovejoy, E.R.      849(4) 849
Lu, D.      262(72—73) 272
Lu, D.-H.      750(22) 784
Lu, S.-P.      57(25) 76 216(12—13 15) 223(15) 225(15) 270—271 286(5 13) 292 328(4) 339(4) 341
Lu, Z.      591(1) 594
Lu, Z.-M.      218(23) 268—269(78) 271—272 320—321(13) 322
Luckhaus, D.      377(3) 379
Lundeen, S.R.      705(17—20) 708
Luo, X.      749(19) 765(19) 767(19) 783
Lyapunov exponents      496—497
Lyapunov exponents, dynamical instability      517—518
Lyapunov exponents, periodic orbit      500
Lyapunov exponents, periodic orbit, acetylene      534 536
Lyapunov exponents, periodic orbit, bifurcated      500—501
Lyapunov exponents, resonance lifetime and      556
Lykke, K.R.      626(24) 645 732(14) 741
Lyon, S.A.      315(2) 322
Ma, Si.      382(16) 385
Maas, D.J.      65(48) 77
Mackenzie, S.R.      629(40) 646 669(24) 670—671(29) 672(29—30) 675(33) 684—685(24) 697
Mackey, L.      538—539(133) 580
Maclnnis, J.      394(34) 403
Maergoiz, A.I.      820(3 16) 822(3 16) 823(18) 828—829(3) 832(3) 842(16) 843—845(33—34 36—37) 846(3 16 34 37) 847—848
Magnes, O.      425(64) 441 444(1) 444
Magnus, W.      597(3) 598
Mahon, C.R.      670(27) 697
Main, J.      493(11) 510(11) 576
Makarewicz, J.      416(36) 440
Makri, N.      263—264(74) 272 863(21) 868
Malisch, J.      328(17) 335(17) 339(17) 341(17) 342
Malisch, W.      79(7) 79—80
Mallard, W.G.      731(10) 741
Malta, C.P.      546(144) 581
Malzahn, D.      332(32) 333(32—33) 343
Mandel, L.      346(14) 371 382(9) 385
Mandelshtam, V.A.      760(46) 776(68) 784—785
Manners, J.      526(116—117) 527(117) 580
Mantegna, R.N.      542(142) 580
Manthe, U.      200(9) 201 854(4) 857(4) 859(11) 861(11) 867 868(4—5 7) 868—869
Manz, J.      4(2—3) 18(2) 43 79(6—9) 79—80 86(2) 87 89(4) 103(5) 117—118(13) 122(13) 131 133(4 6—7) 134(4) 135(4 6) 135 136(4) 137 185(1) 191(1) 191 196(1) 196 197(1) 200(3—4 6 8) 201 202(1) 202 03(4—5) 203 274(5—7) 275 281(1—3) 281 328(8 12 14 17 21—23) 329(14 21 23 26—27) 330(14) 331(26—27) 332(21—22) 334(23) 335(14 17 21) 336(14) 339(8 12 14 16 21—23) 340(26) 341(14 17 22—23 26) 341—342 373(2—3) 373—374 375(3) 377(1) 377 379 458(3) 458 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 581 750(21) 761(21 51—53) 784—785 812(3) 812 849(2) 849 874(2) 886
Mao, J.-M.      493(11) 510(11 51) 576—577
Marcus, R.A.      96(1) 96 391(2) 393(20) 394(20 22) 395(2 44) 396(44) 398—399(44) 401—403 405 406(1) 406—407 410(1—2) 414(25—26) 439—440 454(1) 454 519(94) 539(135) 579—580 750—751(23) 784 835(23) 842(31) 847—848 850(1—2) 850 870(1) 870
Marcus, R.M.      493(2) 575
Marden, M.C.      405(2) 406
Markov approximation      199—200
Markovic, N.      820(2) 823(2) 835(26) 847
Marks, J.      732(14) 741
Maroncelli, M.      142(2—4 7—8 10) 144(4) 145(2—4 7—8 10) 162(7) 163(7—8 10) 173(2—4 7—8 10) 174(2) 178—179 394(31 34) 403
Marquardt, R.      93(3—5) 93 377(3) 379(7) 379 381(1—2) 381 588(7) 589 590(1) 591
Marque, J.      405(2) 406
Martens, C.G.      373(7) 374 514(66) 578
Martin, J.-L.      146(15) 160(15) 179
Marvet, U.      86(3) 87 89(3)
Maslov index      556 559
Maslov, V.P.      861(15) 867
Masnou-Seeuws, F.      647(1) 648 707(32) 708
Mass reflectron      661
Mass-analyzed threshold ionization spectroscopy      668 670 723
Mastenbroek, J.W.G.      730(2) 741
Masters, C.C.      146(21) 179
Materny, A.      42 90(3) 90
Mathews, C.W.      412(14) 440
Mathies, R.A.      146(16—17) 151—152(17) 178(17) 179 196(4) 196 382(18) 385
Mathis, J.      750(21) 761(21) 784
Matkowsky, B.J.      393(16) 402
Matro, A.      48(10) 57(21) 59(10 21) 75—76 150(27) 179 204(1) 204 217(18) 218(19) 241(18) 253(61) 271—272 303(11) 312
Matsumoto, A.      332(31) 343
Matsunaga, F.M.      570(156) 581
Matthies, G.      517(81) 578
Matveyets, Yu.A.      878(8) 884(11) 886
Matveyev, O.I.      661—662(8) 662
Matyuk, V.M.      661(6—7) 662
Maurette, M.-T.      279(2) 280
Maushart, Th.      416(38) 440
Mauta, K.      730(2) 741
Maxwell wave equation      362
May, B.D.      626(32) 646
May, V.      332(32) 333(32—33) 343
Mazurenko, Yu.T.      394(39) 403
McCammon, J.A.      393(17) 402
McCann, J.F.      286(3) 292
McCarroll, R.      820(9) 843(9) 847
McCarthy, M.I.      791—792(6) 795 796
McCarthy, P.J.      400(49) 403
McCormack, E.F.      459(1) 459
McCoy, A.B.      590 868(5) 868
McDermott, D.      158(33) 180
McDonald, J.M.      791(5) 796
McGlynn, S.P.      791(5) 796
McKoy, A.B.      201(14) 202
McKoy, V.      617—618(18) 668(1) 696
McKoy, V.B.      616(16) 623
Mead, R.D.      732(14) 741
Mease, K.      218(21) 268—269(76) 271—272 318(7) 322
Mecke, R.      331(28) 342
Meerts, W.L.      423(55) 441
Mehta, A.      454(1) 454
Mehta, M.L.      516(74) 518(74) 578
Meier, C.      60—61(38) 64(42) 65(49) 67(49) 76—77 196(6) 196
Melinger, J.S.      65(45—46) 77
Mello, P.A.      505(44) 577 772(67) 785
Mendas, I.      820(11) 847
Meredith, D.C.      521(109) 579
Merkt, F.      434(75 79) 441 610(4) 623 626(11—12) 629(11—12 40) 634(11—12) 639(57) 644(12) 645—646 668(2 10 12) 669(24) 670(28) 672(30) 675(2 33) 681(12) 684—685(24) 686(12) 689—690(46) 697—698
Messiah, A.      745(1) 783
Messina, M.      59(35) 76 218(25) 235—236(32) 265(25 32) 267(25) 271 273(1) 274(8) 274—275 276(2) 276 328(7) 339(7) 341 346(7) 370
Metal clusters      see also "Ultrafast relaxation"
Metal clusters, characteristics      102
Metal clusters, multiphoton ionization      102
Metal clusters, transient two-photon ionization spectroscopy      103—104
Metiu, H.      201(13) 202
Metz, R.B.      733(16) 739(16) 741
Meyer, H.-D.      200(9) 201(9) 201—202 772(65) 785 868(7) 868—869
Meyer, W.      79(8) 80 196(1) 196 197(1) 202(1) 203
Meyerhofer, D.D.      374(1) 376(1) 377
Michaille, L.      521(113) 528(113) 579
Microviscosity      400
Mies, F.H.      48(12) 76 87 89(6)
Mikeska, H.J.      519(95) 579
Miladi et al.      718
Miller, T.A.      731(8) 733—734(8) 741
Miller, W.      259(66—67) 263(67) 272
Miller, W.H.      259(64—65) 262(64) 263(64 74) 264(74) 272 493(4) 496(18) 497(20 24) 499(29) 510—511(55) 512(29) 528(55) 536(124) 538(24) 540(136) 541(4 139) 555(24) 575—577 580 759(41) 761(50) 764(50) 779(73) 782(74—76) 784—785 812(1) 812 853(1) 854(2—4 6) 855(3) 857(3—4) 859(11) 860(3) 861(11 13 15a 16) 862(3b) 863(21) 865(3a 22) 867 868(1—5) 868 870
Mills, I.M.      496(16) 576
Mishin, V.I.      661—662(8) 662 663(2) 663
Mixed time-frequency representation      346
Mlynek, J.      189—190(9) 191
Mohan, V.      201(18) 202 761(53) 785
Mohrschladt, R.      393(8) 399(8) 401
Moiseyev, N.      760(45) 784
Mojtabai, F.      393(8) 399(8) 401
Mokhtari, A.      41 44
Moldauer, P.A.      505(44) 577
Molecular control, design, feedback role      316—318
Molecular control, issues in      280
Molecular design, potential advantage of physical methods      277
Molecular dynamics, control theory applications      235
Molecular dynamics, simplified picture      594—595
Molecular eigenstates      442
Molecular motion      588
Molecular spectra      588
Molecular structure      11—13
Molecular structure, coherence in orientation      11—13
Molecular structure, complex, coherence      18—20
Molecules, heating or cooling in electronic ground state      313—314
Molin, Y.      4(9) 43
Molinari, L.      519(96) 579
Momose, T.      734(17) 741
Moore, C.B.      493(4) 541(4 138—139) 575 580 750(29) 782(74—76) 784—785 812(1) 812 849(3—4) 849
Moore, E.J.      400(48) 403
Mordaunt, D.H.      668(9) 697 747(34) 752(34 38) 753—754(34) 758(34) 760(34) 769(38) 772(34) 774(34) 784 786(34) 812(4) 812 815(1) 815
Morgan, J.D.      393(17) 402
Morgan, M.C.      405(1) 405
Morikawa et al.      718
Morillo, M.      394(24) 402
Morley, G.P.      668(9) 697
Morokuma, K.      484(13) 490
Morse oscillator tailored to OH bond      329—330
Morse-like vibrational spacings      485
Mostowski, J.      800(5) 806
Movshev, V.G.      661(6—7) 662
Mrugala, F.      812(3) 812
Muckerman, J.T.      258(63) 261(63) 272
Muehlpfordt, A.      626(1 16) 629(1) 634(1) 644(1) 645 668(14) 681—682(14) 697
Mueller, E.W.      876(6) 884(6) 886
Mueller, K.      504(40) 570(40) 577
Mueller-Dethlefs, K.      434(74) 441 615(11) 616(14—16) 617(17 20) 618(17) 619(21—22 24) 620(22) 623 626(6a) 629(6) 645 668(6) 676(34—35) 678(35) 668(1) 696—697 701(1) 707 726(4) 726
Mukamel, S.      91(1—2) 91—92 142(1) 146(1) 160—162(1) 178—180 178(51) 182(1—3) 182 200(1) 200 210 235(28—30) 245(28) 265(28—30) 271 274(8) 275(1) 275—276 317(6) 322 346(6) 347(17) 349(17) 350(23) 351(17) 356(17) 357(24) 360(26) 363(17) 369(17) 370—371 386(1—2) 387 394(35 37) 403 514(65 68) 578 800(4) 806
Muller, H.G.      59(31) 76
Mulliken, R.S.      63(40) 76 649 702(5) 708
Multichannel quantum defect theory      686 701—707
Multichannel quantum defect theory, autoionizing Rydberg states      686—696
Multichannel quantum defect theory, autoionizing Rydberg states, argon calculations      689—692
Multichannel quantum defect theory, autoionizing Rydberg states, calculation method      687—689
Multichannel quantum defect theory, autoionizing Rydberg states, nitrogen calculations      692—696
Multichannel quantum defect theory, autoionizing Rydberg states, reactance matrix      688—689
Multichannel quantum defect theory, autoionizing Rydberg states, Schroedinger equation      686—688
Multichannel quantum defect theory, Born — Oppenheimer approximation      719
Multichannel quantum defect theory, coordinate-dependent quantum defect matrices      707
Multichannel quantum defect theory, frame transformations and bound states      702—704
Multichannel quantum defect theory, nonadiabatic effects      720
Multichannel quantum defect theory, rotation-electron coupling      703
Multichannel quantum defect theory, states in electronic continuum      706
Multiphoton ionization, metal clusters      102
Multiple pulses, phase-coherent, coherence control      9—10
Multiple-pulse echo experiments      209
Munster, M.      636(51) 641(51) 646
Muradaz, M.A.      279(1) 280
Murthy, M.V.N.      517(80) 578
Myers, J.D.      732(13) 737(13) 741
Nadler, W.      394(22) 402
Nagasawa, Y.      169(39) 171(39) 173(49) 180 394(29) 399(29) 402
NaI, double-peak structure      44
NaI, femtosecond dynamics of dissociation reaction      20—21
NaI, unimolecular dissociation      16 18
NaI, vibrogram      525—526
Nakamura, K.      519(90 95 102) 520(103) 579
Nakata, R.S.      570(156) 581
Nazarova, N.B.      328(13) 332(13) 334(13) 339(13) 342
Nd-Yag laser, frequency-doubled      286—287
Negative ions, coherent vibrational motion      313
Negus, D.K.      393(11) 401
Nelson, K.      304(14) 312
Nelson, K.A.      59(32) 76 173(47) 176(50) 180 346(3) 362(3) 370
Nemeth, G.I.      626(3b 13) 629(3 13) 645
NeNePo spectroscopy, diatomics      111—114
NeNePo spectroscopy, large clusters      129—130
NeNePo spectroscopy, triatomics      114—117
Nenner, I.      612(9) 623
Neugebauer, F.      333(33) 343
Neuhauser, D.      215(11) 270 855(8) 867
Neuhauser, R.      410(5—6) 416(30) 420(5—6 30) 420(30) 423(59) 424—425(6) 427(6) 428(6 30) 431(30) 433(69) 435—436(89) 438(89) 439—442
Neumark, D.M.      458(2) 458 631(44) 646 668(5) 697 730(4) 733(16) 739(16) 741 816(4) 816
Neusser, H.J.      410(3—6) 413(3—4 19—22) 414(3—4 23—24 27) 415(3 28—29) 416(30—33 37) 417(29) 418(37) 420(30) 423(59) 427(6) 428(6 22 30) 431(30 65) 433(69—70) 434(77) 435(22 89) 436(89) 438(89) 439—442 630(43) 646 669(25) 697
Neyer, D.W.      749(18—19) 759(18) 765(19) 767(19) 783
Ng, C.Y.      668(3) 697
Ni, G.Q.      72—73(53) 77
Nibbering, E.T.J.      178(52) 180 348(19) 371
Nibler, J.W.      143(53) 180
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå