Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Incoherent interference control      286—287 290—291 293
Incoherent population dynamics, time-dependent      421
Infrared fields, very intense      455—456
Infrared multiphoton dissociation, vinoxy radical      738
Infrared multiple-photon excitation and dissociation      451—452 454
Innes, K.K.      493(3) 575
Inoue, G.      731(7) 733(7) 741
Integral operator, Hilbert — Schmidt type      250
Intensity parameter      186
Interference, between isolated periodic orbits      502—504
Internal molecular degrees of freedom      301—314
Internal molecular degrees of freedom, instantaneous dipole moment      303—304
Internal molecular degrees of freedom, nonevaporative cooling      305 307—312
Internal molecular degrees of freedom, vibrational heating, using nondestructive optical cycling      304—307
Intramolecular coupling      642
Intramolecular dynamics      409—439 442—459 463—489 see
Intramolecular dynamics, bottlenecks      633
Intramolecular dynamics, coherent population dynamics      422—424
Intramolecular dynamics, coherent population dynamics, special pulse sequences      424—425
Intramolecular dynamics, electronically excited $S_{1}$ state of benzene      411—419
Intramolecular dynamics, electronically excited $S_{1}$ state of benzene, effect of van der Waals bonded noble-gas atoms      414—419
Intramolecular dynamics, electronically excited $S_{1}$ state of benzene, intermediate vibrational excess energy      414—415
Intramolecular dynamics, electronically excited $S_{1}$ state of benzene, mechanism      411—412
Intramolecular dynamics, electronically excited $S_{1}$ state of benzene, states at low excess energy      413—414
Intramolecular dynamics, high Rydberg states in polyatomic molecules      433—438
Intramolecular dynamics, high Rydberg states in polyatomic molecules, experimental results      435—438
Intramolecular dynamics, high Rydberg states in polyatomic molecules, experimental setup      435
Intramolecular dynamics, incoherent population dynamics      420—422
Intramolecular dynamics, IVR control      449—451
Intramolecular dynamics, polyatomic systems      410
Intramolecular dynamics, resonance structure change      484—488
Intramolecular dynamics, spectroscopic effective Hamiltonian model      464—466
Intramolecular energy redistribution      421
Intramolecular vibrational density redistribution, $Na_{3}(B)$      134
Intramolecular vibrational-energy redistribution      9 11 85—86 103 586—587
Intramolecular vibrational-energy redistribution, unzipped polyads      473—474
Invariant set      543—545
Inverse Born — Oppenheimer approximation      630—631 647 649—651
Inverse Born — Oppenheimer regime, versus Born — Oppenheimer regime      724—725
Inversion algorithm      321 323—324
Iodine in hexane, curve-crossing problem      209
Iodine in hexane, solution spectra      142—143 145
Iodine, $\underline{\widetilde{B}}$ state      152—155
Iodine, evolution of vibrational wavepacket      273
Iodine, interaction with solvent      195
Iodine, Morse-type model, vibrogram      524—525
Iodine, polarization-detected pump-probe signal      154
Iodine, solvent-induced dissociation      154
Iodine, stretched target state      267—268
Ion-molecule reaction, hydrogen      678—681 698—699
Ion-molecule reaction, hydrogen, collision energy resolution      679—680
Ion-molecule reaction, hydrogen, Rydberg state perturbation      680—681
Ion-molecule reaction, hydrogen, transmission effects      680
Ion-molecule reaction, state-selected      669—672
Ionic model clusters, classical trajectory studies      657
Ionization potential      628
Ionization, exploiting coherence      450—451
Ionization, probability and microwave, field strength      584—585
Ionov, S.I.      86(2) 87
IR144, in ethanol, three-pulse echo peak shift      170—173
Isaacs, N.W.      158(33) 180
Isaacson, A.D.      259(68—69) 272
Isaacson, X.      26(71) 272
Ishikawa, H.      465(5) 484—489(5) 490
Isolated molecular dynamics      9 11
Isomerization, vibrational transitions      338—340
Itakura, R.      791—792(10) 795(10) 797
Ito, K.      705(13) 707(13) 708
Ito, M.      422(53) 441 674(32) 697
Ivanov, L.N.      662(8) 662 663(2) 663
Ivanov, Yu.      286(3) 292
Iwata, L.      767(57) 785
Izrailev, F.M.      541(140) 580 583(3) 585
Jackson, J.D.      363(27) 371
Jacobson, M.      468(11) 484(11) 489(11) 490
Jaffe, C.      388
Jahn — Teller effect      726
Jahn — Teller interaction      725
Jahn — Teller splitting      624
Jain, S.R.      517(80) 578
Jakubetz, W.      274(7) 275 281(3—4) 281 328(8 23) 329(23 27) 334(23) 339(8 23) 341(23 27) 341—342 373(2) 373
Janik, G.R.      670(27) 697
Janssen, M.H.M.      52(16) 76 651(1) 652 730(2) 741 799(2) 806
Janza, A.E.      200(8) 201 761(53) 785
Janzky, J.      382(8 11 14 17 19) 385
Jaques, C.      86(2) 87
Jayatilaka, D.      496(18) 576 870
Jean, J.M.      147—148(22—25) 149(24—25) 150(22—24) 151(25) 152(24—25) 153(25) 160(24—25) 177(22 25) 179 195
Jeannin, C.      714(14) 715
Jeschke, H.      116(11) 131
Jessen, B.      520(105) 579
Jhe, W.      379(9) 381
Jia, Y.      146(20) 164(37) 166(37) 168(37) 169(40) 171(40) 172—175(37) 179—180
Jimenez, R.      146(18) 152(18) 154(18) 157(18) 158(18 34) 159(18) 179—180
Jiminez, R.      394(31 34) 403
Jin, Y.      233—234
Joens, J.A.      566(158) 572(158) 581
Johnson, A.E.      394(27 29 36) 399(27 29) 402—403
Johnson, B.R.      521(107) 572(107) 579 651 790(3) 796
Johnson, P.      668—669(4) 697
Johnson, P.M.      419(44) 434(76) 440—441
Joly, A.G.      173(47) 180
Jonas, D.M.      94 96 146(14 20) 152(28) 153(29) 154(20 28—30) 155(28) 156(29) 179 195 465(1) 467(1) 490
Jonathan, N.B.H.      849(1) 849
Jones, K.E.      39
Jones, M.R.      146(19) 152(19) 160(19) 179
Joo, T.      146(20) 164(37) 166(37) 168(37) 169(39—40) 171(39—40) 172(37) 173(37 49) 174—175(37) 179—180
Joosen, W.      59(31) 76
Jortner, E.J.      711—712(1 4—5) 713—714(4—5 13) 714—715
Jortner, J.      81(1) 82(1—2) 82 393(15) 402 411(9) 412(11 17) 416(35) 419(45) 434(88) 437(88) 439—440 442 454—455(1) 455 537(128) 580 588(5) 589 629(39) 637(55) 642(62) 646 668(13) 681—682(13) 691—692(13) 697 764(54) 785
Joseph, T.      200(4) 201 274(6) 275 328(22) 332(22) 339(22) 341(22)
Jost, R.      493(6) 515(68) 518(6) 521(111 114) 528(6 111) 534—536(114) 537(6) 540(6) 575 578 579
Joyeux, M.      521(113) 526(116—117) 527(117) 528(113 118—121) 579—580
Judson, R.S.      251(60) 272 319(10a) 322
Julienne, P.S.      423(57) 441
Jumenez, R.      142(3—4) 144(4) 145(3—4) 173(3—4) 179
Jung, G.      511(57) 528(57) 577
Jungen, C.      634(46) 646 647(1) 648 693(48) 698 703—704(10) 705(13—16) 706(21—23 26 30) 707(13 32 34) 708 721
Jungwirth, P.      201(15) 202 868(8) 869
Just, B.      79(7) 79—80 274(5) 275 328(14 17 19 23—24) 329(14 19 23—24 27) 330(14) 334(23) 335(14 17 19 24) 336(14 19 24) 339(14 17 19 23—24) 341(14 17 23—24 27) 342 373(3) 374 375(3) 377
Kades, E.      79(7) 79—80 274(7) 275 281(3) 281 328(8 17) 335(17) 339(8 17) 341(17) 341—342 373(2) 373
Kahn, K.H.      302(7) 312
Kaiser, R.      302(10) 305(10) 307(10) 312
Kakitani, T.      405(5) 406
Kalinowsky, H.      379(9) 381
Kaluza — Muckerman reduction      261
Kaluza, M.      258(63) 261(63) 272
Kalyanaraman, G.      201(18) 202 332(27) 342
Kane, D.      59(33) 76
Kane, D.J.      346(9—10) 370
Kanfer, S.      388
Kapelje, K.A.      510(51) 577
Kappert, J.      782(77) 785
Kappes, M.      103(4) 131
Karasch, S.      157(32) 180
Karlsson, H.O.      858(10) 867
Karplus — Porter surface      571
Karrlein, W.      200(8) 201 761(53) 785
Kash, P.W.      730(3) 741
Kasha, M.      418(42) 440
Kassakowski, A.      238(37) 271
Kastberg, A.      305(15) 312
Kaufman, F.      849(1) 849
Kause, J.L.      800(6) 806
Kawashiria, H.      176(50) 180
Kay, K.G.      862—863(20) 868
Kazmina, N.P.      327(3) 339(3) 341
Keating, J.P.      503(38) 517(81) 577—578
Keldish limit      374—376
Keldish, L.V.      374(1) 376(1) 377
Keller, H.-M.      484(13) 490 746(8 10) 747(16—17 34) 748(16—17) 749(17 20) 750(20) 751(16—17 32—37) 752(32—33 38) 753(32 34) 754(32—34) 756(32) 758(34 36—37) 760(34) 761(16 32—33) 762(8 32) 763(33) 764(32) 765(10 32) 766—767(32) 768(17) 769(16—17 38) 770(16—17) 771(8 17) 772(34) 774(34 36) 775(36—37) 776—777(37) 778—779(10 37) 780—781(37) 783—784 786(34) 812(4) 812 815(1) 815
Kellman, M.E.      466(9—10) 489(9—10) 490 590 591(1) 594
Kempl, S.      201(12) 202
Kendall, D.J.W.      705(14) 708
Kennedy, R.A.      723(1) 723
Keshavamurthy, S.      861(13) 867
Khidekel, V.      182(2) 182 360(26) 371 386(2) 387 514(68) 578
Khundkar, L.R.      41 86(1) 87 492(1) 575
Kicked-rotator model      583
Kim, B.      794(14a 14b) 797
Kim, H.J.      393(16) 402
Kim, K.G.      236(33) 271
Kim, S.      320(12) 322
Kim, S.B.      42 185(2) 191(2) 191
Kim, S.K.      41—42 85(1) 85 400(50) 403
Kim, W.-H.      171(41) 180
Kimble, H.J.      382(5) 385
Kinsey, J.L.      421(52) 441 493(3) 518(85) 521(107) 529(122) 572(107) 575 578—580 747(13) 783 790(3) 796
Kirmse, B.      521(111) 528(111) 579
Kistiakowski, G.B.      412(13) 440
Kitsopoulos, T.N.      668(5) 697
Kleiman, V.      216(14—16) 223(15) 225(15) 270—271 286(13) 292 328(4) 339(4) 341
Kleiman, V.D.      286(6) 292
Klein, M.L.      394(33) 403
Klein, S.      172(43) 180
Kleinman, V.D.      57(26) 76
Kliner, D.A.V.      394(36) 403
Klippenstein, S.J.      814(1) 814 850(2) 850 870(1) 870
Klosek-Dygas, M.M.      393(16) 402
Kluk, E.      862—863(17) 867—868
Knee, J.L.      668(8 17) 669(17) 681(17) 692(17) 697
Kneppe, H.      731(5) 733(5) 741
Knight, P.L.      286(15) 292 382(3) 385
Knittel, Th.      413(22) 428(22) 435(22) 440
Knospe, O.      657(1) 657
Knyazev, I.N.      327(3) 339(3) 341 661(5—7) 662
Kobayashi, T.      382(17 20) 385
Kobe, K.      121(19) 124—125(22) 131 132(2) 133(7) 135(2) 135 137 203(5 7) 203—204
Koch, E.E.      711—712(1) 714
Koehler, A.      713(12) 715
Koenig, A.      510(51) 577
Koenig, W.      346(8) 370
Koeppel, H.      203(6) 203 493(5) 510(53) 518(5) 528(5) 537(5) 540(5) 575 577 772(65) 785
Kohen, D.      204(1) 206
Kohler, B.      18(15) 43 59(34—35) 76 173(47) 180 235(30) 265(30) 271 273(1) 274(8) 274 275(1) 275—276 302(5) 312 346(6—7) 370
Kolba, E.      79(7) 79—80 328(12 17) 335(17) 339(12 17) 341(17) 342
Kollman, M.      519(99) 579
Kompa, K.L.      457
Kong, W.      669(26) 697
Kono, T.      731(9) 741
Konopsky, V.      880(9) 883(9) 886
Konz, E.      423(56) 441
Koperski, J.      87 89(5)
Korolkov, M.V.      274(5) 275 328(15—17) 329(15—16) 332(16) 333(15) 335(17) 337(16) 339(15—17) 341(15—17) 342
Kosloff, D.      200(1) 201 855(8) 867
Kosloff, R.      48(3) 59(28) 75—76 78(2) 79(2 4) 79 90(4) 90 196(3 5—10) 196 198 200(1 3 5) 201(18) 201—202 215(5—6) 216(5) 218(6 20) 227(6) 228(5) 231(6) 233(6) 236(6) 239(40—42) 246(20) 253(20) 255(20) 257—258(20) 270—271 274(1) 274 286(2) 291 302(18) 304(19) 308(17) 312—313 317(6) 322 328(6) 332(29) 339—340(6) 341—342 373(1) 373 393—394(23) 402 458(1 3) 458 761(51) 784 812(3) 812 855(8) 867
Kosman, W.M.      693(49) 698
Kosower, E.M.      393(11) 401
Kosygin, D.V.      516(75) 518(75) 578
Koszykowski, M.L.      410(2) 439 519(94) 579
Kouri, D.J.      855(8) 867
Koutecky, J.      103(4) 114—115(10) 117(10 16—17) 129—130(25) 131—132
Kowalcyzk, P.      800(5) 806
Kozlov, A.A.      878(8) 886
Krainov, V.P.      419(46) 423(46) 440
Kramer's equation      392—393
Kramer's equation, microviscosity      400
Kramers, H.A.      392(6) 401
Krasnopolsky, K.M.      746(6) 783
Krause, H.      416(32—33) 434(77) 440—441 630(43) 646 669(25) 697
Krause, J.      302(5) 312
Krause, J.L.      18(15) 43 59(35) 76 218(25) 235(29 30—32) 236(32) 265(25 29 30—32) 267(25) 271 273(1) 274(8) 274 275(1) 275 276(2) 276 296(3) 300 328(7) 339(7) 341 346(6—7) 370
Krause, L.      87 89(5—6)
Krauss, M.      87
Kreisle, D.      626(33) 646
Krempl, S.      868(10) 869
Krim, L.      86(2) 87
Kris, Y.      629(41) 646
Kroes, G.J.      573(161) 581
Kudriavtsec, Yu.A.      327(3) 339(3) 341
Kuehling, H.      102—103(1) 117—118(13) 121(19) 122(13) 131 132(2) 133(7) 135(2) 135 137 203(5 7) 203—204
Kuehn, O.      332(32) 333(32—33) 343
Kuharski, R.A.      394(33) 403
Kuhn, A.      328(9) 339(9) 341 425(63) 441
Kukulin, V.I.      746(6) 783
Kulander, K.C.      565(152 154) 566(152) 569(154) 581
Kumar, P.V.      142(3—4 10) 144(4) 145(3—4 10) 163(10) 173(3—4 10) 179 394(31 34) 403
Kuo, Q.      465(7) 488(7) 490
Kurizki, G.      270(79) 272 286(7) 292
Kurokawa, K.      382(20) 385
Kus, M.      510(50) 519(99) 557(50) 577 579
Kutzelnigg, W.      451(1) 453 587(2) 588
Kuzmin, M.V.      451(1) 451
Labastie, P.      68(50) 72(50) 77 102(1—2) 103(1) 122(2) 131 434(81) 441 538(129) 580
Laboratory feedback control      318—320
Lacy, L.Y.      346(8) 370
Ladanyi, B.M.      145(12) 172(12 43) 176(12) 179—180 181(1) 181
Lagendijk, A.      59(31) 76
Lagrange multipliers, constraints      245
Laidler, K.J.      835(23) 847
Lakshmanan, M.      519(90) 520(103) 579
Laloee, F.      745(2) 783
Lamb, W.E.      243(44) 271
Lambda-type double-resonance experiment      420
Lambert, I.R.      668(9) 697
Lambert, W.R.      40
Lambropoulos, P.      286(15) 292
Lambry, J.-C.      146(15) 160(15) 179
Lan, B.L.      281(4) 281 329(27) 341(27) 342
Landau — von Neumann superoperator      512—514
Landau, L.      457(1) 457
Landau, L.D.      162(35) 180
Landauer, R.      393(16) 402
Landi, K.      238(38) 271
Landman, U.      81—82(1) 82 711—714(4) 715
Lane, A.M.      538—539(133) 580
Lane, N.F.      703(9) 708
Lang, M.J.      164(37) 166(37) 168(37) 172—175(37) 180
Langer, J.S.      392—393(7) 401
Langevin rate constant      826
Lankhuijzen, G.M.      537(127) 580
Laporta, P.      61(39) 76
Laser      893—894
Laser control      185—191 373—388
Laser control, domains      327—328
Laser control, electron beam focusing      187—189
Laser control, enantiomers with different parities      381
Laser control, intramolecular vibrational distribution rate      449—451
Laser control, optimal conditions      375 377
Laser control, parity and chirality      377—379
Laser control, product branching ratios      458
Laser control, response functions      386—387
Laser control, stability matrix      387—388
Laser control, symmetries, time dependence      377—378
Laser lens, spherical aberration      189
Laser photoion microscopy, femtosecond      883—884
Laser photoion projection microscope      875—876
Laser pulse, duration effect      63—65
Laser pulse, intense, coherent control      65—74
Laser pulse, intensity versus duration      896—897
Laser pulse, ultrashort      373
Laser pulse, up- and down-chirped      60—63
Laser resonance ionization spectroscopy with mass spectroscopy      663
Laser resonance photoelectron spectromicroscopy      880—883
Laser resonance photoion spectromicroscopy      884—885
Laser wave, evanescent, electron reflection      189—190
Laser, importance to chemistry      873—875
Laser, light characteristics      875
Laser, ultrashort pulses      48
Laser-induced continuum structure      286
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå