Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)
Àííîòàöèÿ: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.
The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:
Femtochemistry: chemical reaction dynamics and their control Coherent control with femtosecond laser pulses Femtosecond chemical dynamics in condensed phases Control of quantum many-body dynamics Experimental observation of laser control Solvent dynamics and RRKM theory of clusters High-resolution spectroscopy and intramolecular dynamics Molecular Rydberg states and ZEKE spectroscopy Transition-state spectroscopy and photodissociation Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.
The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.
Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.
The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.
An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.
From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 945
Äîáàâëåíà â êàòàëîã: 11.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Incoherent interference control 286—287 290—291 293
Incoherent population dynamics, time-dependent 421
Infrared fields, very intense 455—456
Infrared multiphoton dissociation, vinoxy radical 738
Infrared multiple-photon excitation and dissociation 451—452 454
Innes, K.K. 493(3) 575
Inoue, G. 731(7) 733(7) 741
Integral operator, Hilbert — Schmidt type 250
Intensity parameter 186
Interference, between isolated periodic orbits 502—504
Internal molecular degrees of freedom 301—314
Internal molecular degrees of freedom, instantaneous dipole moment 303—304
Internal molecular degrees of freedom, nonevaporative cooling 305 307—312
Internal molecular degrees of freedom, vibrational heating, using nondestructive optical cycling 304—307
Intramolecular coupling 642
Intramolecular dynamics 409—439 442—459 463—489 see
Intramolecular dynamics, bottlenecks 633
Intramolecular dynamics, coherent population dynamics 422—424
Intramolecular dynamics, coherent population dynamics, special pulse sequences 424—425
Intramolecular dynamics, electronically excited state of benzene 411—419
Intramolecular dynamics, electronically excited state of benzene, effect of van der Waals bonded noble-gas atoms 414—419
Intramolecular dynamics, electronically excited state of benzene, intermediate vibrational excess energy 414—415
Intramolecular dynamics, electronically excited state of benzene, mechanism 411—412
Intramolecular dynamics, electronically excited state of benzene, states at low excess energy 413—414
Intramolecular dynamics, high Rydberg states in polyatomic molecules 433—438
Intramolecular dynamics, high Rydberg states in polyatomic molecules, experimental results 435—438
Intramolecular dynamics, high Rydberg states in polyatomic molecules, experimental setup 435
Intramolecular dynamics, incoherent population dynamics 420—422
Intramolecular dynamics, IVR control 449—451
Intramolecular dynamics, polyatomic systems 410
Intramolecular dynamics, resonance structure change 484—488
Intramolecular dynamics, spectroscopic effective Hamiltonian model 464—466
Intramolecular energy redistribution 421
Intramolecular vibrational density redistribution, 134
Intramolecular vibrational-energy redistribution 9 11 85—86 103 586—587
Intramolecular vibrational-energy redistribution, unzipped polyads 473—474
Invariant set 543—545
Inverse Born — Oppenheimer approximation 630—631 647 649—651
Inverse Born — Oppenheimer regime, versus Born — Oppenheimer regime 724—725
Inversion algorithm 321 323—324
Iodine in hexane, curve-crossing problem 209
Iodine in hexane, solution spectra 142—143 145
Iodine, state 152—155
Iodine, evolution of vibrational wavepacket 273
Iodine, interaction with solvent 195
Iodine, Morse-type model, vibrogram 524—525
Iodine, polarization-detected pump-probe signal 154
Iodine, solvent-induced dissociation 154
Iodine, stretched target state 267—268
Ion-molecule reaction, hydrogen 678—681 698—699
Ion-molecule reaction, hydrogen, collision energy resolution 679—680
Ion-molecule reaction, hydrogen, Rydberg state perturbation 680—681
Ion-molecule reaction, hydrogen, transmission effects 680
Ion-molecule reaction, state-selected 669—672
Ionic model clusters, classical trajectory studies 657
Ionization potential 628
Ionization, exploiting coherence 450—451
Ionization, probability and microwave, field strength 584—585
Ionov, S.I. 86(2) 87
IR144, in ethanol, three-pulse echo peak shift 170—173
Isaacs, N.W. 158(33) 180
Isaacson, A.D. 259(68—69) 272
Isaacson, X. 26(71) 272
Ishikawa, H. 465(5) 484—489(5) 490
Isolated molecular dynamics 9 11
Isomerization, vibrational transitions 338—340
Itakura, R. 791—792(10) 795(10) 797
Ito, K. 705(13) 707(13) 708
Ito, M. 422(53) 441 674(32) 697
Ivanov, L.N. 662(8) 662 663(2) 663
Ivanov, Yu. 286(3) 292
Iwata, L. 767(57) 785
Izrailev, F.M. 541(140) 580 583(3) 585
Jackson, J.D. 363(27) 371
Jacobson, M. 468(11) 484(11) 489(11) 490
Jaffe, C. 388
Jahn — Teller effect 726
Jahn — Teller interaction 725
Jahn — Teller splitting 624
Jain, S.R. 517(80) 578
Jakubetz, W. 274(7) 275 281(3—4) 281 328(8 23) 329(23 27) 334(23) 339(8 23) 341(23 27) 341—342 373(2) 373
Janik, G.R. 670(27) 697
Janssen, M.H.M. 52(16) 76 651(1) 652 730(2) 741 799(2) 806
Janza, A.E. 200(8) 201 761(53) 785
Janzky, J. 382(8 11 14 17 19) 385
Jaques, C. 86(2) 87
Jayatilaka, D. 496(18) 576 870
Jean, J.M. 147—148(22—25) 149(24—25) 150(22—24) 151(25) 152(24—25) 153(25) 160(24—25) 177(22 25) 179 195
Jeannin, C. 714(14) 715
Jeschke, H. 116(11) 131
Jessen, B. 520(105) 579
Jhe, W. 379(9) 381
Jia, Y. 146(20) 164(37) 166(37) 168(37) 169(40) 171(40) 172—175(37) 179—180
Jimenez, R. 146(18) 152(18) 154(18) 157(18) 158(18 34) 159(18) 179—180
Jiminez, R. 394(31 34) 403
Jin, Y. 233—234
Joens, J.A. 566(158) 572(158) 581
Johnson, A.E. 394(27 29 36) 399(27 29) 402—403
Johnson, B.R. 521(107) 572(107) 579 651 790(3) 796
Johnson, P. 668—669(4) 697
Johnson, P.M. 419(44) 434(76) 440—441
Joly, A.G. 173(47) 180
Jonas, D.M. 94 96 146(14 20) 152(28) 153(29) 154(20 28—30) 155(28) 156(29) 179 195 465(1) 467(1) 490
Jonathan, N.B.H. 849(1) 849
Jones, K.E. 39
Jones, M.R. 146(19) 152(19) 160(19) 179
Joo, T. 146(20) 164(37) 166(37) 168(37) 169(39—40) 171(39—40) 172(37) 173(37 49) 174—175(37) 179—180
Joosen, W. 59(31) 76
Jortner, E.J. 711—712(1 4—5) 713—714(4—5 13) 714—715
Jortner, J. 81(1) 82(1—2) 82 393(15) 402 411(9) 412(11 17) 416(35) 419(45) 434(88) 437(88) 439—440 442 454—455(1) 455 537(128) 580 588(5) 589 629(39) 637(55) 642(62) 646 668(13) 681—682(13) 691—692(13) 697 764(54) 785
Joseph, T. 200(4) 201 274(6) 275 328(22) 332(22) 339(22) 341(22)
Jost, R. 493(6) 515(68) 518(6) 521(111 114) 528(6 111) 534—536(114) 537(6) 540(6) 575 578 579
Joyeux, M. 521(113) 526(116—117) 527(117) 528(113 118—121) 579—580
Judson, R.S. 251(60) 272 319(10a) 322
Julienne, P.S. 423(57) 441
Jumenez, R. 142(3—4) 144(4) 145(3—4) 173(3—4) 179
Jung, G. 511(57) 528(57) 577
Jungen, C. 634(46) 646 647(1) 648 693(48) 698 703—704(10) 705(13—16) 706(21—23 26 30) 707(13 32 34) 708 721
Jungwirth, P. 201(15) 202 868(8) 869
Just, B. 79(7) 79—80 274(5) 275 328(14 17 19 23—24) 329(14 19 23—24 27) 330(14) 334(23) 335(14 17 19 24) 336(14 19 24) 339(14 17 19 23—24) 341(14 17 23—24 27) 342 373(3) 374 375(3) 377
Kades, E. 79(7) 79—80 274(7) 275 281(3) 281 328(8 17) 335(17) 339(8 17) 341(17) 341—342 373(2) 373
Kahn, K.H. 302(7) 312
Kaiser, R. 302(10) 305(10) 307(10) 312
Kakitani, T. 405(5) 406
Kalinowsky, H. 379(9) 381
Kaluza — Muckerman reduction 261
Kaluza, M. 258(63) 261(63) 272
Kalyanaraman, G. 201(18) 202 332(27) 342
Kane, D. 59(33) 76
Kane, D.J. 346(9—10) 370
Kanfer, S. 388
Kapelje, K.A. 510(51) 577
Kappert, J. 782(77) 785
Kappes, M. 103(4) 131
Karasch, S. 157(32) 180
Karlsson, H.O. 858(10) 867
Karplus — Porter surface 571
Karrlein, W. 200(8) 201 761(53) 785
Kash, P.W. 730(3) 741
Kasha, M. 418(42) 440
Kassakowski, A. 238(37) 271
Kastberg, A. 305(15) 312
Kaufman, F. 849(1) 849
Kause, J.L. 800(6) 806
Kawashiria, H. 176(50) 180
Kay, K.G. 862—863(20) 868
Kazmina, N.P. 327(3) 339(3) 341
Keating, J.P. 503(38) 517(81) 577—578
Keldish limit 374—376
Keldish, L.V. 374(1) 376(1) 377
Keller, H.-M. 484(13) 490 746(8 10) 747(16—17 34) 748(16—17) 749(17 20) 750(20) 751(16—17 32—37) 752(32—33 38) 753(32 34) 754(32—34) 756(32) 758(34 36—37) 760(34) 761(16 32—33) 762(8 32) 763(33) 764(32) 765(10 32) 766—767(32) 768(17) 769(16—17 38) 770(16—17) 771(8 17) 772(34) 774(34 36) 775(36—37) 776—777(37) 778—779(10 37) 780—781(37) 783—784 786(34) 812(4) 812 815(1) 815
Kellman, M.E. 466(9—10) 489(9—10) 490 590 591(1) 594
Kempl, S. 201(12) 202
Kendall, D.J.W. 705(14) 708
Kennedy, R.A. 723(1) 723
Keshavamurthy, S. 861(13) 867
Khidekel, V. 182(2) 182 360(26) 371 386(2) 387 514(68) 578
Khundkar, L.R. 41 86(1) 87 492(1) 575
Kicked-rotator model 583
Kim, B. 794(14a 14b) 797
Kim, H.J. 393(16) 402
Kim, K.G. 236(33) 271
Kim, S. 320(12) 322
Kim, S.B. 42 185(2) 191(2) 191
Kim, S.K. 41—42 85(1) 85 400(50) 403
Kim, W.-H. 171(41) 180
Kimble, H.J. 382(5) 385
Kinsey, J.L. 421(52) 441 493(3) 518(85) 521(107) 529(122) 572(107) 575 578—580 747(13) 783 790(3) 796
Kirmse, B. 521(111) 528(111) 579
Kistiakowski, G.B. 412(13) 440
Kitsopoulos, T.N. 668(5) 697
Kleiman, V. 216(14—16) 223(15) 225(15) 270—271 286(13) 292 328(4) 339(4) 341
Kleiman, V.D. 286(6) 292
Klein, M.L. 394(33) 403
Klein, S. 172(43) 180
Kleinman, V.D. 57(26) 76
Kliner, D.A.V. 394(36) 403
Klippenstein, S.J. 814(1) 814 850(2) 850 870(1) 870
Klosek-Dygas, M.M. 393(16) 402
Kluk, E. 862—863(17) 867—868
Knee, J.L. 668(8 17) 669(17) 681(17) 692(17) 697
Kneppe, H. 731(5) 733(5) 741
Knight, P.L. 286(15) 292 382(3) 385
Knittel, Th. 413(22) 428(22) 435(22) 440
Knospe, O. 657(1) 657
Knyazev, I.N. 327(3) 339(3) 341 661(5—7) 662
Kobayashi, T. 382(17 20) 385
Kobe, K. 121(19) 124—125(22) 131 132(2) 133(7) 135(2) 135 137 203(5 7) 203—204
Koch, E.E. 711—712(1) 714
Koehler, A. 713(12) 715
Koenig, A. 510(51) 577
Koenig, W. 346(8) 370
Koeppel, H. 203(6) 203 493(5) 510(53) 518(5) 528(5) 537(5) 540(5) 575 577 772(65) 785
Kohen, D. 204(1) 206
Kohler, B. 18(15) 43 59(34—35) 76 173(47) 180 235(30) 265(30) 271 273(1) 274(8) 274 275(1) 275—276 302(5) 312 346(6—7) 370
Kolba, E. 79(7) 79—80 328(12 17) 335(17) 339(12 17) 341(17) 342
Kollman, M. 519(99) 579
Kompa, K.L. 457
Kong, W. 669(26) 697
Kono, T. 731(9) 741
Konopsky, V. 880(9) 883(9) 886
Konz, E. 423(56) 441
Koperski, J. 87 89(5)
Korolkov, M.V. 274(5) 275 328(15—17) 329(15—16) 332(16) 333(15) 335(17) 337(16) 339(15—17) 341(15—17) 342
Kosloff, D. 200(1) 201 855(8) 867
Kosloff, R. 48(3) 59(28) 75—76 78(2) 79(2 4) 79 90(4) 90 196(3 5—10) 196 198 200(1 3 5) 201(18) 201—202 215(5—6) 216(5) 218(6 20) 227(6) 228(5) 231(6) 233(6) 236(6) 239(40—42) 246(20) 253(20) 255(20) 257—258(20) 270—271 274(1) 274 286(2) 291 302(18) 304(19) 308(17) 312—313 317(6) 322 328(6) 332(29) 339—340(6) 341—342 373(1) 373 393—394(23) 402 458(1 3) 458 761(51) 784 812(3) 812 855(8) 867
Kosman, W.M. 693(49) 698
Kosower, E.M. 393(11) 401
Kosygin, D.V. 516(75) 518(75) 578
Koszykowski, M.L. 410(2) 439 519(94) 579
Kouri, D.J. 855(8) 867
Koutecky, J. 103(4) 114—115(10) 117(10 16—17) 129—130(25) 131—132
Kowalcyzk, P. 800(5) 806
Kozlov, A.A. 878(8) 886
Krainov, V.P. 419(46) 423(46) 440
Kramer's equation 392—393
Kramer's equation, microviscosity 400
Kramers, H.A. 392(6) 401
Krasnopolsky, K.M. 746(6) 783
Krause, H. 416(32—33) 434(77) 440—441 630(43) 646 669(25) 697
Krause, J. 302(5) 312
Krause, J.L. 18(15) 43 59(35) 76 218(25) 235(29 30—32) 236(32) 265(25 29 30—32) 267(25) 271 273(1) 274(8) 274 275(1) 275 276(2) 276 296(3) 300 328(7) 339(7) 341 346(6—7) 370
Krause, L. 87 89(5—6)
Krauss, M. 87
Kreisle, D. 626(33) 646
Krempl, S. 868(10) 869
Krim, L. 86(2) 87
Kris, Y. 629(41) 646
Kroes, G.J. 573(161) 581
Kudriavtsec, Yu.A. 327(3) 339(3) 341
Kuehling, H. 102—103(1) 117—118(13) 121(19) 122(13) 131 132(2) 133(7) 135(2) 135 137 203(5 7) 203—204
Kuehn, O. 332(32) 333(32—33) 343
Kuharski, R.A. 394(33) 403
Kuhn, A. 328(9) 339(9) 341 425(63) 441
Kukulin, V.I. 746(6) 783
Kulander, K.C. 565(152 154) 566(152) 569(154) 581
Kumar, P.V. 142(3—4 10) 144(4) 145(3—4 10) 163(10) 173(3—4 10) 179 394(31 34) 403
Kuo, Q. 465(7) 488(7) 490
Kurizki, G. 270(79) 272 286(7) 292
Kurokawa, K. 382(20) 385
Kus, M. 510(50) 519(99) 557(50) 577 579
Kutzelnigg, W. 451(1) 453 587(2) 588
Kuzmin, M.V. 451(1) 451
Labastie, P. 68(50) 72(50) 77 102(1—2) 103(1) 122(2) 131 434(81) 441 538(129) 580
Laboratory feedback control 318—320
Lacy, L.Y. 346(8) 370
Ladanyi, B.M. 145(12) 172(12 43) 176(12) 179—180 181(1) 181
Lagendijk, A. 59(31) 76
Lagrange multipliers, constraints 245
Laidler, K.J. 835(23) 847
Lakshmanan, M. 519(90) 520(103) 579
Laloee, F. 745(2) 783
Lamb, W.E. 243(44) 271
Lambda-type double-resonance experiment 420
Lambert, I.R. 668(9) 697
Lambert, W.R. 40
Lambropoulos, P. 286(15) 292
Lambry, J.-C. 146(15) 160(15) 179
Lan, B.L. 281(4) 281 329(27) 341(27) 342
Landau — von Neumann superoperator 512—514
Landau, L. 457(1) 457
Landau, L.D. 162(35) 180
Landauer, R. 393(16) 402
Landi, K. 238(38) 271
Landman, U. 81—82(1) 82 711—714(4) 715
Lane, A.M. 538—539(133) 580
Lane, N.F. 703(9) 708
Lang, M.J. 164(37) 166(37) 168(37) 172—175(37) 180
Langer, J.S. 392—393(7) 401
Langevin rate constant 826
Lankhuijzen, G.M. 537(127) 580
Laporta, P. 61(39) 76
Laser 893—894
Laser control 185—191 373—388
Laser control, domains 327—328
Laser control, electron beam focusing 187—189
Laser control, enantiomers with different parities 381
Laser control, intramolecular vibrational distribution rate 449—451
Laser control, optimal conditions 375 377
Laser control, parity and chirality 377—379
Laser control, product branching ratios 458
Laser control, response functions 386—387
Laser control, stability matrix 387—388
Laser control, symmetries, time dependence 377—378
Laser lens, spherical aberration 189
Laser photoion microscopy, femtosecond 883—884
Laser photoion projection microscope 875—876
Laser pulse, duration effect 63—65
Laser pulse, intense, coherent control 65—74
Laser pulse, intensity versus duration 896—897
Laser pulse, ultrashort 373
Laser pulse, up- and down-chirped 60—63
Laser resonance ionization spectroscopy with mass spectroscopy 663
Laser resonance photoelectron spectromicroscopy 880—883
Laser resonance photoion spectromicroscopy 884—885
Laser wave, evanescent, electron reflection 189—190
Laser, importance to chemistry 873—875
Laser, light characteristics 875
Laser, ultrashort pulses 48
Laser-induced continuum structure 286
Ðåêëàìà