Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)
Àííîòàöèÿ: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.
The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:
Femtochemistry: chemical reaction dynamics and their control Coherent control with femtosecond laser pulses Femtosecond chemical dynamics in condensed phases Control of quantum many-body dynamics Experimental observation of laser control Solvent dynamics and RRKM theory of clusters High-resolution spectroscopy and intramolecular dynamics Molecular Rydberg states and ZEKE spectroscopy Transition-state spectroscopy and photodissociation Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.
The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.
Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.
The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.
An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.
From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 945
Äîáàâëåíà â êàòàëîã: 11.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Nicolis, G. 514(64) 578
Niedzielski, J. 820(12 14) 847
Nielsen, H.H. 486(17) 490
Nielsen, U. 200(7) 201
Nikitin, E.E. 820(3 8 16) 822(3 8 16) 828—829(3) 832(3) 842(16) 843(33—34 36—37) 844—845(33) 846(3 8 16 34 37—39) 847—848
Nishiyaraa, K. 194
Nitric oxide in argon matrices 712
Nitric oxide, monomers, fluorescence 717
Nitric oxide, state-selected ions 676—678
Nitric oxide, vibronic states 607—609
Nitric oxide, ZEKE spectroscopy compared with, ab initio calculated spectra 617—618
Nitric oxide, ZEKE spectroscopy compared with, photoelectron spectra 616—617
Nitrogen ion, TDF profile following Rydberg state excitation 681—685
Nitrogen ion, ZEKE spectroscopy compared with photoionization efficiency 608—610
Nitrogen, autoionizing Rydberg states, MQDT calculations 692—696
Nitrogen, state-selected ions 675—676
Nitrogen, thermal capture rate constants 845
Nitrogen-ion system, adiabatic channel potential curves 844
Nitzan, A. 171(42) 180 393(9 16) 401—402
Noble-gas atoms, van der Waals bonded, effect on intramolecular dynamics 414—419
Noid, D.W. 410(2) 439
Nonevaporative cooling 305 307—312
Nonevaporative cooling, atomic cooling scheme 305 307
Nonevaporative cooling, density operator 308—309
Nonevaporative cooling, Hamiltonians 308—309
Nonevaporative cooling, molecular 307—308
Nonevaporative cooling, phase-angle diagram for zero mass transport 309—312
Nonevaporative cooling, population change equation 309
Noordara, L.D. 59(31) 65(47—58) 76—77 537(127) 580
Nordholm, S. 636(54) 642(54) 646 820(2) 823(2) 835(26) 847
normalization constant 163
North, S. 732(12) 737(12) 741
Northrup, F.J. 747(14) 783
Northup, H. 393(17) 402
Noskov, J.K. 200(7) 201
Nuclear motions 14
Nuclear spin symmetry, conservation, violation 381
Number variance 518
Nussenzweig, H.M. 347—348(18) 371
NygSrd, J. 520(104) 579
O'Brien, J.P. 465(3—4) 467(3) 488(3—4) 490 536(125) 580
O'Halloran, M.A. 706(27—29) 708
OCS, absorption spectrum, VUV region 790—791
OCS, Fano profile, VUV-PHOFEX spectrum 793—795 797
OCS, photofragment excitation spectrum 791—793
Ogai, A. 767(57—58) 785 794(18a) 797
OH, neutral ground-state spectrum 611 613
OH, rovibrational adiabatic channel potential curves 846
Ohde, K. 791(7 9—10) 792(9—10) 794(7) 795(10) 796—797
Ohmine, I. 145(11) 172(11) 176(11) 179
Ohshima, Y. 465(5) 484—489(5) 490
Okada, T. 194
Okunishi, M. 794(16) 797
Olender, R. 171(42) 180
Oliveros, E. 279(2) 280
Olzmann, M. 835(21) 847
Onda, K. 794(16) 797
Ong, C.K. 247(48—49) 268(48) 272
Onuchic, J.N. 393—394(14) 402
Optical Bloch equations 147—148
Optical cycling, nondestructive, vibrational heating using 304—307
Optical polarization, Wigner wavepackets 362—364
Optimal control theory 217—218 231
Orel, A.E. 565(154) 569(154) 581
Organic reactions, complex, femtochemistry 26—30
Orientation, coherence in 11—13
Orlik, W. 129(24) 132
Orlowski, T.E. 39
Ormos, P. 405(2) 406
Orszag, A. 173(47) 180
Orthogonal coordinates, role 209
Osborn, D.L. 730(4) 733(16) 741 816(4) 816
Otis, C.E. 433(72) 437(72) 441
Ott, E. 548(145) 581
Ovchinnikov, Yu.B. 189(8) 191
Oxtoby, D.W. 394(25) 402
Oxygen, Franck — Condon mapping model 786—787
Oxygen, thermal capture rate constants 845
Oxygen-ion system, adiabatic channel potential curves 844
Ozier, I. 423(55) 441
Ozone, photodissociation 138
Ozone, ultrashort-lived resonances 572
Ozorio de Almeida, A.M. 500(32) 509(49) 546(32 49) 557(49) 577
Pack, R.T. 538(131) 580
Palit, D.K. 395(42) 399(42) 403
Pandey, A. 505(44) 577 772(67) 785
Papazyan, A. 142(2) 145(2) 173—174(2) 178 394(34) 403
Papiz, M.Z. 158(33) 180
Papousek, D. 496(17) 498(17) 576
para-Difluorobenzene, photoelectron compared with ZEKE spectrum 619
Paramonov, G.K. 79(7) 79—80 274(4—5) 275 328(13—18 21 23) 329(14—16 18 21 23 26—27) 330(14) 331(26) 332(15—16 18 21) 334(13 18 23) 335(14 17—18 21) 336(14 18) 337(16) 339(13—18 21 23) 340(26) 341(14—17 23 26—27) 342 373(3) 374 375(3) 377(1) 377 379
Parasuk, V. 281(4) 281 329(27) 341(27) 342
Park, H.K. 669(23) 697
Park, N.S. 395(41) 400(41) 403
Park, S.M. 57(25) 76 216(12—13) 270 286(5) 292
Parkin, J.E. 412(18) 440
Parmenter, C.S. 412(15) 440
Partition function, activated complex 824 827 834
Partition function, linear dipole 825
Passino, S. 173(49) 180
Passino, S.A. 146(14) 169(39) 171(39) 179—180
Pastrana, M.R. 752(39) 784
Pate, B.H. 454(2) 455
Patel, J.S. 59(29) 76
Patterson, M.R. 634(48) 646
Paye, J. 346(11—12) 370—371
Peatman, W.B. 612(6—8) 623 626(7) 629(7) 645
Pechukas, P. 519(90) 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 579 581 776(69) 785 854(56) 867
Pedersen, S. 42 56(20) 76 90(1) 90 328(10) 339—340(10) 341 399(47) 403
Peeler, B. 820(12) 847
Peirce, A. 248—249(51) 272 316(4) 322
Peirce, A.P. 215(8—9) 227(8) 236(8—9) 249—250(54) 270 272 328(8) 339(8) 341
Peng, B.-C. 142(6) 145(6) 173(6) 179
Peng, L.W. 41
Pepin, C. 485(15) 490
Percival, I.C. 519(93) 579
Periodic orbits 491—575 see semiclassical"
Periodic orbits, bifurcating 509—510
Periodic orbits, bounded systems 514—538
Periodic orbits, bounded systems, 526—528
Periodic orbits, bounded systems, 519—531
Periodic orbits, bounded systems, 530—536
Periodic orbits, bounded systems, , Morse-type model 524—525
Periodic orbits, bounded systems, average level density 515—516
Periodic orbits, bounded systems, beyond Heisenberg time 520
Periodic orbits, bounded systems, diatomic molecules 524—526
Periodic orbits, bounded systems, emergent classical orbits and vibrograms 520—524
Periodic orbits, bounded systems, energy scale below mean spacing 516—519
Periodic orbits, bounded systems, energy spectrum 514—519
Periodic orbits, bounded systems, level curvature statistics 519—520
Periodic orbits, bounded systems, NaI, vibrogram 525—526
Periodic orbits, bounded systems, periodic-orbit structures 516
Periodic orbits, bounded systems, synthesis 536—538
Periodic orbits, bounded systems, tetra-atomic molecules 529—536
Periodic orbits, bounded systems, time domain 520—524
Periodic orbits, bounded systems, triatomic molecules 525—529
Periodic orbits, bulk periodic 506 508—509
Periodic orbits, expression, eigenfunction averages 504—505
Periodic orbits, nonisolated, Berry — Tabor trace formula 506—509
Periodic orbits, off-diagonal 559—560 567
Periodic orbits, open systems 538—573
Periodic orbits, open systems, 565—571
Periodic orbits, open systems, 561—565
Periodic orbits, open systems, 571—572
Periodic orbits, open systems, 572—573
Periodic orbits, open systems, bifurcation associated with transition to chaos 545—552
Periodic orbits, open systems, classical dynamics 542—545
Periodic orbits, open systems, dissociation on potentials with saddle 541—561
Periodic orbits, open systems, energy and time domains 538—539
Periodic orbits, open systems, fully chaotic regime 552—555
Periodic orbits, open systems, periodic regime, quantization 555—557
Periodic orbits, open systems, periodic-orbit quantization in fully chaotic regime 557—561
Periodic orbits, open systems, transition regime, quantization 557
Periodic orbits, open systems, ultrashort-lived resonances in triatomic molecules 561—573
Periodic orbits, open systems, unimolecular dissociation rates 539—541
Periodic orbits, period-energy diagram 568 574
Periodic orbits, role in scarring phenomena 505
Periodic orbits, shape 595—596
Periodic orbits, topological characterization 595—596
Periodic orbits, triatomic molecules 585—586
Periodic-orbit dividing surfaces 545—547
Periodic-orbit quantization 556—557
Persch, G. 493(5) 518(5) 528(5) 537(5) 540(5) 575
Person, M.D. 730(3) 741
Perturbation model 207—208
Perturbation theory 587 590
Perturbation theory, higher order 596
Peskin, U. 759(41) 779(73) 784—785
Peslherbe, G.H. 841(29) 848
Peteanu, L.A. 146(16—17) 151—152(17) 178(17) 179
Peters, E.-M. 339(35) 343
Peters, K. 339(35) 343
Petrov, V. 339(36) 343
Petsko, G. 405(3) 406
Petto, J.P. 434(81) 441
Pfeifer, P. 93(6) 93
Phase and amplitude imaging 799—805
Phase and amplitude imaging, highly rotating molecule 803—805
Phase and amplitude imaging, theory 800—803
Phase coherence 302
Phase space, spiraling frequency 205
Phase space, Wigner wavepackets 353—355
Phase-modulated femtosecond laser pulses 59—63
Phase-space theory 778—779
Phase-space theory, deviations caused by anisotropy 820
Phase-space theory, fragmentation rates 821
Phase-space theory, free-rotor expression 833
Phase-space wavepackets 346—347
Phelps, D.K. 394(28) 399(28) 402
Phenol-methanol, ZEKE spectrum 621
Phenol-water complex, intermolecular normal modes 619 621
Phenol-water complex, total ion signal compared with ZEKE spectrum 619—620
Phillips, D. 379(9) 381
Phillips, Jr., G.N. 405(4) 406
Phillips, W.D. 302(9) 305(9) 307(9) 312
Phonon squeezing 382—384
Phonon states, -functions 382—383
Photoabsorption, cross section 570
Photoassociation 87—88
Photochemical nonradical chain production processes 279—280
Photochemical reactions 889—890
Photochemistry, future work 891—893 895
Photochemistry, important accomplishments 890—891
Photochemistry, study of 890
Photochemistry, vinoxy radical 731
Photodetachment 116
Photodissociation, 730
Photodissociation, 742
Photodissociation, 565
Photodissociation, 561
Photodissociation, 285—293
Photodissociation, ozone 138
Photodissociation, produces linear combination of internal states 297—298
Photodissociation, small polyatomic molecules, VUV region 789—796
Photodissociation, total, temporal evolution 127
Photodissociation, trends in experiments 730
Photodissociation, vibrationally mediated 747
Photodissociation, vinoxy radical see also "Vinoxy radical"
Photodissociation, vinoxy radical, + CO channel 737—739
Photodissociation, vinoxy radical, anisotropy parameter 735—736 742—743
Photodissociation, vinoxy radical, D + channel 739—740
Photodissociation, vinoxy radical, energetics 737—738
Photodissociation, vinoxy radical, experiment 732—733
Photodissociation, vinoxy radical, photofragment TOF spectrum 735—736
Photodissociation, vinoxy radical, results 733—736
Photodissociation, vinoxy radical, translational energy distributions 734—735 742—744
Photoelectron spectroscopy, compared with, threshold photoelectron spectroscopy 614—615
Photoelectron spectroscopy, compared with, ZEKE spectroscopy 616—619
Photoelectron spectroscopy, excited states, with resonance ionization 661
Photofragment excitation spectrum, OCS 791—793
Photofragmentation reactions, elementary, rates 894
Photoionization efficiency, compared with ZEKE spectroscopy 608—611
Photoionization mass spectrometry 661
Photoionization spectroscopy, versions 660
Photoisomerization, stilbene 84—85 456
Photon echo, time-integrated 348
Physics Today 382(1) 385
Pibel, C.D. 791(7 9) 792(9) 794(7) 796—797
Pilling, M.J. 515(71) 539(71) 578
Pique, J.-P. 493(7) 518(85) 526(116—117) 527(117) 528(7) 528(119) 575 578 580 597—598(3) 598 642—643(58) 646
Pittner, J. 114—115(10) 117(10) 131
Pliva, J. 465(6) 486(6) 490
Ploehn, H. 201(12) 202 868(10) 869
Poincare mappings, acetylene 533—534
Poincare surface of section 596
Poisson distribution, spacing 516
Polanyi, J.C. 4(10) 43 296(8) 300
Polarizability, free electron in optical field 186
Polarizability, isotropic 821—822
Polarization operators, autocorrelation function 365
Polasek, M. 329(27) 341(27) 342
Polik, W.F. 465(3—4) 467(3) 488(3—4) 490 493(4) 536(125) 541(4 138—139) 575 580 750(29) 782(74—76) 784—785 812(1) 812 849(3) 849
Pollak, E. 393(16 18) 402 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 581 772(63) 785
Pollard, W.T. 146(16) 179 196(4) 196 382(18) 385
Pollicott — Ruelle resonances 514
Pollicott, M. 514(63) 578
Polyad 466 468
Polyad, fractionation patterns within 470—473
Polyad, intrapolyad matrix elements 477—478
Polyad, unzipped 470—472
Polyatomic molecules, dissociation 632
Polyatomic molecules, dissociation, spectra 789—790
Polyatomic molecules, fluorescence 743
Polyatomic molecules, highly excited states 443
Polyatomic molecules, intramolecular dynamics 410
Polyatomic molecules, intramolecular dynamics, high Rydberg states 433—438
Polyatomic molecules, intramolecular dynamics, mechanism 411—412
Polyatomic molecules, laser control of IVR 454
Polyatomic molecules, photodissociation in VUV region, OCS 789—796
Polyatomic molecules, photodissociation in VUV region, OCS, absorption spectrum 790—791
Polyatomic molecules, photodissociation in VUV region, OCS, Fano profile, VUV-PHOFEX spectrum 793—795 797
Polyatomic molecules, photodissociation in VUV region, OCS, photofragment excitation spectrum 791—793
Polyatomic molecules, potential-energy surface 746—747
Polyatomic molecules, unimolecular reactions 648—649
Pomphrey, N. 519(93) 579
Population dynamics, coherent 422—424
Population dynamics, coherent, special pulse sequences 424—425
Population dynamics, incoherent 420—422
Portella-Oberli, M.-T. 714(14) 715
Porter — Thomas distribution 540—541
Porter, C.E. 505(44) 516(73) 518—519(73) 577—578
Potapov, V.K. 661(6—8) 662
Potassium clusters, pump-probe experiments 126
Potassium clusters, transient two-photon ionization 123—124
Potential-energy surface 782
Potential-energy surface, ab initio, OCS 795
Potential-energy surface, Bowman — Bitman — Harding 760—761 763
Potential-energy surface, electronic states 106—107
Potential-energy surface, H + 855—856
Potential-energy surface, HCO 752—754
Potential-energy surface, HNO 752—754
Potential-energy surface, polyatomic molecules 746—747
Potential-energy surface, reduced-dimension 262
Potential-energy surface, shaping 374
Potential-energy surface, unimolecular dissociation 752—754
Potential-energy surface, water 752—754
Potential-energy surface, XCO 769
Potentials, distinguishing between types 538—539
Potter, E.D. 42 56(20) 76
Potter, E.P. 90(1) 90 328(10) 339—340(10) 341
Ðåêëàìà