Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Nicolis, G.      514(64) 578
Niedzielski, J.      820(12 14) 847
Nielsen, H.H.      486(17) 490
Nielsen, U.      200(7) 201
Nikitin, E.E.      820(3 8 16) 822(3 8 16) 828—829(3) 832(3) 842(16) 843(33—34 36—37) 844—845(33) 846(3 8 16 34 37—39) 847—848
Nishiyaraa, K.      194
Nitric oxide in argon matrices      712
Nitric oxide, monomers, fluorescence      717
Nitric oxide, state-selected ions      676—678
Nitric oxide, vibronic states      607—609
Nitric oxide, ZEKE spectroscopy compared with, ab initio calculated spectra      617—618
Nitric oxide, ZEKE spectroscopy compared with, photoelectron spectra      616—617
Nitrogen ion, TDF profile following Rydberg state excitation      681—685
Nitrogen ion, ZEKE spectroscopy compared with photoionization efficiency      608—610
Nitrogen, autoionizing Rydberg states, MQDT calculations      692—696
Nitrogen, state-selected ions      675—676
Nitrogen, thermal capture rate constants      845
Nitrogen-ion system, adiabatic channel potential curves      844
Nitzan, A.      171(42) 180 393(9 16) 401—402
Noble-gas atoms, van der Waals bonded, effect on intramolecular dynamics      414—419
Noid, D.W.      410(2) 439
Nonevaporative cooling      305 307—312
Nonevaporative cooling, atomic cooling scheme      305 307
Nonevaporative cooling, density operator      308—309
Nonevaporative cooling, Hamiltonians      308—309
Nonevaporative cooling, molecular      307—308
Nonevaporative cooling, phase-angle diagram for zero mass transport      309—312
Nonevaporative cooling, population change equation      309
Noordara, L.D.      59(31) 65(47—58) 76—77 537(127) 580
Nordholm, S.      636(54) 642(54) 646 820(2) 823(2) 835(26) 847
normalization constant      163
North, S.      732(12) 737(12) 741
Northrup, F.J.      747(14) 783
Northup, H.      393(17) 402
Noskov, J.K.      200(7) 201
Nuclear motions      14
Nuclear spin symmetry, conservation, violation      381
Number variance      518
Nussenzweig, H.M.      347—348(18) 371
NygSrd, J.      520(104) 579
O'Brien, J.P.      465(3—4) 467(3) 488(3—4) 490 536(125) 580
O'Halloran, M.A.      706(27—29) 708
OCS, absorption spectrum, VUV region      790—791
OCS, Fano profile, VUV-PHOFEX spectrum      793—795 797
OCS, photofragment excitation spectrum      791—793
Ogai, A.      767(57—58) 785 794(18a) 797
OH, neutral ground-state spectrum      611 613
OH, rovibrational adiabatic channel potential curves      846
Ohde, K.      791(7 9—10) 792(9—10) 794(7) 795(10) 796—797
Ohmine, I.      145(11) 172(11) 176(11) 179
Ohshima, Y.      465(5) 484—489(5) 490
Okada, T.      194
Okunishi, M.      794(16) 797
Olender, R.      171(42) 180
Oliveros, E.      279(2) 280
Olzmann, M.      835(21) 847
Onda, K.      794(16) 797
Ong, C.K.      247(48—49) 268(48) 272
Onuchic, J.N.      393—394(14) 402
Optical Bloch equations      147—148
Optical cycling, nondestructive, vibrational heating using      304—307
Optical polarization, Wigner wavepackets      362—364
Optimal control theory      217—218 231
Orel, A.E.      565(154) 569(154) 581
Organic reactions, complex, femtochemistry      26—30
Orientation, coherence in      11—13
Orlik, W.      129(24) 132
Orlowski, T.E.      39
Ormos, P.      405(2) 406
Orszag, A.      173(47) 180
Orthogonal coordinates, role      209
Osborn, D.L.      730(4) 733(16) 741 816(4) 816
Otis, C.E.      433(72) 437(72) 441
Ott, E.      548(145) 581
Ovchinnikov, Yu.B.      189(8) 191
Oxtoby, D.W.      394(25) 402
Oxygen, Franck — Condon mapping model      786—787
Oxygen, thermal capture rate constants      845
Oxygen-ion system, adiabatic channel potential curves      844
Ozier, I.      423(55) 441
Ozone, photodissociation      138
Ozone, ultrashort-lived resonances      572
Ozorio de Almeida, A.M.      500(32) 509(49) 546(32 49) 557(49) 577
Pack, R.T.      538(131) 580
Palit, D.K.      395(42) 399(42) 403
Pandey, A.      505(44) 577 772(67) 785
Papazyan, A.      142(2) 145(2) 173—174(2) 178 394(34) 403
Papiz, M.Z.      158(33) 180
Papousek, D.      496(17) 498(17) 576
para-Difluorobenzene, photoelectron compared with ZEKE spectrum      619
Paramonov, G.K.      79(7) 79—80 274(4—5) 275 328(13—18 21 23) 329(14—16 18 21 23 26—27) 330(14) 331(26) 332(15—16 18 21) 334(13 18 23) 335(14 17—18 21) 336(14 18) 337(16) 339(13—18 21 23) 340(26) 341(14—17 23 26—27) 342 373(3) 374 375(3) 377(1) 377 379
Parasuk, V.      281(4) 281 329(27) 341(27) 342
Park, H.K.      669(23) 697
Park, N.S.      395(41) 400(41) 403
Park, S.M.      57(25) 76 216(12—13) 270 286(5) 292
Parkin, J.E.      412(18) 440
Parmenter, C.S.      412(15) 440
Partition function, activated complex      824 827 834
Partition function, linear dipole      825
Passino, S.      173(49) 180
Passino, S.A.      146(14) 169(39) 171(39) 179—180
Pastrana, M.R.      752(39) 784
Pate, B.H.      454(2) 455
Patel, J.S.      59(29) 76
Patterson, M.R.      634(48) 646
Paye, J.      346(11—12) 370—371
Peatman, W.B.      612(6—8) 623 626(7) 629(7) 645
Pechukas, P.      519(90) 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 579 581 776(69) 785 854(56) 867
Pedersen, S.      42 56(20) 76 90(1) 90 328(10) 339—340(10) 341 399(47) 403
Peeler, B.      820(12) 847
Peirce, A.      248—249(51) 272 316(4) 322
Peirce, A.P.      215(8—9) 227(8) 236(8—9) 249—250(54) 270 272 328(8) 339(8) 341
Peng, B.-C.      142(6) 145(6) 173(6) 179
Peng, L.W.      41
Pepin, C.      485(15) 490
Percival, I.C.      519(93) 579
Periodic orbits      491—575 see semiclassical"
Periodic orbits, bifurcating      509—510
Periodic orbits, bounded systems      514—538
Periodic orbits, bounded systems, $CS_{2}$      526—528
Periodic orbits, bounded systems, $C_{2}HD$      519—531
Periodic orbits, bounded systems, $C_{2}H_{2}$      530—536
Periodic orbits, bounded systems, $I_{2}$, Morse-type model      524—525
Periodic orbits, bounded systems, average level density      515—516
Periodic orbits, bounded systems, beyond Heisenberg time      520
Periodic orbits, bounded systems, diatomic molecules      524—526
Periodic orbits, bounded systems, emergent classical orbits and vibrograms      520—524
Periodic orbits, bounded systems, energy scale below mean spacing      516—519
Periodic orbits, bounded systems, energy spectrum      514—519
Periodic orbits, bounded systems, level curvature statistics      519—520
Periodic orbits, bounded systems, NaI, vibrogram      525—526
Periodic orbits, bounded systems, periodic-orbit structures      516
Periodic orbits, bounded systems, synthesis      536—538
Periodic orbits, bounded systems, tetra-atomic molecules      529—536
Periodic orbits, bounded systems, time domain      520—524
Periodic orbits, bounded systems, triatomic molecules      525—529
Periodic orbits, bulk periodic      506 508—509
Periodic orbits, expression, eigenfunction averages      504—505
Periodic orbits, nonisolated, Berry — Tabor trace formula      506—509
Periodic orbits, off-diagonal      559—560 567
Periodic orbits, open systems      538—573
Periodic orbits, open systems, $CO_{2}$      565—571
Periodic orbits, open systems, $HgI_{2}$      561—565
Periodic orbits, open systems, $H_{3}$      571—572
Periodic orbits, open systems, $O_{3}$      572—573
Periodic orbits, open systems, bifurcation associated with transition to chaos      545—552
Periodic orbits, open systems, classical dynamics      542—545
Periodic orbits, open systems, dissociation on potentials with saddle      541—561
Periodic orbits, open systems, energy and time domains      538—539
Periodic orbits, open systems, fully chaotic regime      552—555
Periodic orbits, open systems, periodic regime, quantization      555—557
Periodic orbits, open systems, periodic-orbit quantization in fully chaotic regime      557—561
Periodic orbits, open systems, transition regime, quantization      557
Periodic orbits, open systems, ultrashort-lived resonances in triatomic molecules      561—573
Periodic orbits, open systems, unimolecular dissociation rates      539—541
Periodic orbits, period-energy diagram      568 574
Periodic orbits, role in scarring phenomena      505
Periodic orbits, shape      595—596
Periodic orbits, topological characterization      595—596
Periodic orbits, triatomic molecules      585—586
Periodic-orbit dividing surfaces      545—547
Periodic-orbit quantization      556—557
Persch, G.      493(5) 518(5) 528(5) 537(5) 540(5) 575
Person, M.D.      730(3) 741
Perturbation model      207—208
Perturbation theory      587 590
Perturbation theory, higher order      596
Peskin, U.      759(41) 779(73) 784—785
Peslherbe, G.H.      841(29) 848
Peteanu, L.A.      146(16—17) 151—152(17) 178(17) 179
Peters, E.-M.      339(35) 343
Peters, K.      339(35) 343
Petrov, V.      339(36) 343
Petsko, G.      405(3) 406
Petto, J.P.      434(81) 441
Pfeifer, P.      93(6) 93
Phase and amplitude imaging      799—805
Phase and amplitude imaging, highly rotating $Na_{2}$ molecule      803—805
Phase and amplitude imaging, theory      800—803
Phase coherence      302
Phase space, spiraling frequency      205
Phase space, Wigner wavepackets      353—355
Phase-modulated femtosecond laser pulses      59—63
Phase-space theory      778—779
Phase-space theory, deviations caused by anisotropy      820
Phase-space theory, fragmentation rates      821
Phase-space theory, free-rotor expression      833
Phase-space wavepackets      346—347
Phelps, D.K.      394(28) 399(28) 402
Phenol-methanol, ZEKE spectrum      621
Phenol-water complex, intermolecular normal modes      619 621
Phenol-water complex, total ion signal compared with ZEKE spectrum      619—620
Phillips, D.      379(9) 381
Phillips, Jr., G.N.      405(4) 406
Phillips, W.D.      302(9) 305(9) 307(9) 312
Phonon squeezing      382—384
Phonon states, $\mathcal{Q}$-functions      382—383
Photoabsorption, cross section      570
Photoassociation      87—88
Photochemical nonradical chain production processes      279—280
Photochemical reactions      889—890
Photochemistry, future work      891—893 895
Photochemistry, important accomplishments      890—891
Photochemistry, study of      890
Photochemistry, vinoxy radical      731
Photodetachment      116
Photodissociation, $CD_{3}I$      730
Photodissociation, $CH_{3}I$      742
Photodissociation, $CO_{2}$      565
Photodissociation, $HgI_{2}$      561
Photodissociation, $Na_{2}$      285—293
Photodissociation, ozone      138
Photodissociation, produces linear combination of internal states      297—298
Photodissociation, small polyatomic molecules, VUV region      789—796
Photodissociation, total, temporal evolution      127
Photodissociation, trends in experiments      730
Photodissociation, vibrationally mediated      747
Photodissociation, vinoxy radical      see also "Vinoxy radical"
Photodissociation, vinoxy radical, $CH_{3}$ + CO channel      737—739
Photodissociation, vinoxy radical, anisotropy parameter      735—736 742—743
Photodissociation, vinoxy radical, D + $CD_{2}CO$ channel      739—740
Photodissociation, vinoxy radical, energetics      737—738
Photodissociation, vinoxy radical, experiment      732—733
Photodissociation, vinoxy radical, photofragment TOF spectrum      735—736
Photodissociation, vinoxy radical, results      733—736
Photodissociation, vinoxy radical, translational energy distributions      734—735 742—744
Photoelectron spectroscopy, compared with, threshold photoelectron spectroscopy      614—615
Photoelectron spectroscopy, compared with, ZEKE spectroscopy      616—619
Photoelectron spectroscopy, excited states, with resonance ionization      661
Photofragment excitation spectrum, OCS      791—793
Photofragmentation reactions, elementary, rates      894
Photoionization efficiency, compared with ZEKE spectroscopy      608—611
Photoionization mass spectrometry      661
Photoionization spectroscopy, versions      660
Photoisomerization, stilbene      84—85 456
Photon echo, time-integrated      348
Physics Today      382(1) 385
Pibel, C.D.      791(7 9) 792(9) 794(7) 796—797
Pilling, M.J.      515(71) 539(71) 578
Pique, J.-P.      493(7) 518(85) 526(116—117) 527(117) 528(7) 528(119) 575 578 580 597—598(3) 598 642—643(58) 646
Pittner, J.      114—115(10) 117(10) 131
Pliva, J.      465(6) 486(6) 490
Ploehn, H.      201(12) 202 868(10) 869
Poincare mappings, acetylene      533—534
Poincare surface of section      596
Poisson distribution, spacing      516
Polanyi, J.C.      4(10) 43 296(8) 300
Polarizability, free electron in optical field      186
Polarizability, isotropic      821—822
Polarization operators, autocorrelation function      365
Polasek, M.      329(27) 341(27) 342
Polik, W.F.      465(3—4) 467(3) 488(3—4) 490 493(4) 536(125) 541(4 138—139) 575 580 750(29) 782(74—76) 784—785 812(1) 812 849(3) 849
Pollak, E.      393(16 18) 402 545(143) 548(143) 550(143) 554(143) 560(143) 571(143) 581 772(63) 785
Pollard, W.T.      146(16) 179 196(4) 196 382(18) 385
Pollicott — Ruelle resonances      514
Pollicott, M.      514(63) 578
Polyad      466 468
Polyad, fractionation patterns within      470—473
Polyad, intrapolyad matrix elements      477—478
Polyad, unzipped      470—472
Polyatomic molecules, dissociation      632
Polyatomic molecules, dissociation, spectra      789—790
Polyatomic molecules, fluorescence      743
Polyatomic molecules, highly excited states      443
Polyatomic molecules, intramolecular dynamics      410
Polyatomic molecules, intramolecular dynamics, high Rydberg states      433—438
Polyatomic molecules, intramolecular dynamics, mechanism      411—412
Polyatomic molecules, laser control of IVR      454
Polyatomic molecules, photodissociation in VUV region, OCS      789—796
Polyatomic molecules, photodissociation in VUV region, OCS, absorption spectrum      790—791
Polyatomic molecules, photodissociation in VUV region, OCS, Fano profile, VUV-PHOFEX spectrum      793—795 797
Polyatomic molecules, photodissociation in VUV region, OCS, photofragment excitation spectrum      791—793
Polyatomic molecules, potential-energy surface      746—747
Polyatomic molecules, unimolecular reactions      648—649
Pomphrey, N.      519(93) 579
Population dynamics, coherent      422—424
Population dynamics, coherent, special pulse sequences      424—425
Population dynamics, incoherent      420—422
Portella-Oberli, M.-T.      714(14) 715
Porter — Thomas distribution      540—541
Porter, C.E.      505(44) 516(73) 518—519(73) 577—578
Potapov, V.K.      661(6—8) 662
Potassium clusters, pump-probe experiments      126
Potassium clusters, transient two-photon ionization      123—124
Potential-energy surface      782
Potential-energy surface, ab initio, OCS      795
Potential-energy surface, Bowman — Bitman — Harding      760—761 763
Potential-energy surface, electronic states      106—107
Potential-energy surface, H + $H_{2}$      855—856
Potential-energy surface, HCO      752—754
Potential-energy surface, HNO      752—754
Potential-energy surface, polyatomic molecules      746—747
Potential-energy surface, reduced-dimension      262
Potential-energy surface, shaping      374
Potential-energy surface, unimolecular dissociation      752—754
Potential-energy surface, water      752—754
Potential-energy surface, XCO      769
Potentials, distinguishing between types      538—539
Potter, E.D.      42 56(20) 76
Potter, E.P.      90(1) 90 328(10) 339—340(10) 341
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå