Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)
Àííîòàöèÿ: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.
The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:
Femtochemistry: chemical reaction dynamics and their control Coherent control with femtosecond laser pulses Femtosecond chemical dynamics in condensed phases Control of quantum many-body dynamics Experimental observation of laser control Solvent dynamics and RRKM theory of clusters High-resolution spectroscopy and intramolecular dynamics Molecular Rydberg states and ZEKE spectroscopy Transition-state spectroscopy and photodissociation Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.
The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.
Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.
The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.
An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.
From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 945
Äîáàâëåíà â êàòàëîã: 11.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Swimm, R.T. 497(22) 576
Swwet, R.M. 405(4) 406
Syage, J.A. 41
Symmetric-stretch classical stability diagram 597—598
System-bath interactions 160—175 see
System-bath interactions, line shape function 160—164
System-bath model 263
Szabo, G. 250(59) 252(59) 272
Szakacs, T. 317(6) 322
Szarka, A.Z. 395(42) 399(42) 403
Taatjes, C.A. 730(2) 741
Tabche-Fouhaile, A. 612(9) 623
Tabor, M. 493(13) 506—507(13) 519(94) 576 579
Takahashi, A. 91(1) 91
Takami, T. 519(97) 579
Takayanagi, K. 820(10) 847
Takayanagi, M. 731(9) 741
Talkner, P. 392(3) 401
Tanaka, I. 4(9) 43
Tang, H. 218(20) 246(20) 253(20) 255(20) 257(20) 258(20) 271
Tanimura, Y. 182(1) 182
Tannor — Kosloff — Rice scheme 52 59
Tannor — Rice control scheme 216—217
Tannor — Rice control scheme, more sophisticated 217
Tannor — Rice perturbation theory 227
Tannor — Rice — Kosloff — Rabitz method 226—236
Tannor — Rice — Kosloff — Rabitz method, density matrix representation 235—236
Tannor — Rice — Kosloff — Rabitz method, excited-state-potential-energy surface 230 234—235
Tannor — Rice — Kosloff — Rabitz method, fragmentation 227
Tannor — Rice — Kosloff — Rabitz method, ground-state potential-energy surface 228
Tannor — Rice — Kosloff — Rabitz method, Hamiltonian 227
Tannor — Rice — Kosloff — Rabitz method, modified objective functional 231
Tannor — Rice — Kosloff — Rabitz method, optimal control field 236
Tannor — Rice — Kosloff — Rabitz method, optimal pulse shape calculation 232—234
Tannor — Rice — Kosloff — Rabitz method, product yield as function of pulse separation 229
Tannor — Rice — Kosloff — Rabitz method, pump-dump scheme 226
Tannor — Rice — Kosloff — Rabitz method, pump-dump scheme, pulse separation 228—229
Tannor, D. 233—234 239(40) 271 304(19) 313
Tannor, D.J. 48(3—4) 59(4 28) 75—76 78—79(2) 79 90(4) 90 138 196(5 7 10) 196 198 200(5) 201 204(1) 206 215—216(4—6) 218(6) 226(4 6) 228(5) 231(6) 235—236(6) 270 273(2) 274 282 286(2) 291 302(4 17 18) 312—313 317(6) 322 328(6) 339—340(6) 341 346(1) 370 373(1) 373 419(49) 440 458(1) 458
Tanrrago, G. 486(17) 490
Tardy, D.C. 849(1) 849
Tarn, T.J. 247(46—50) 248(47) 268(48) 272
Tarr, A.W. 296(8) 300
Taubes, G. 892
Tautomerization reactions, DNA models 34—37
Taylor, H.S. 557(150) 581 760(46) 776(68) 784—785
Teich, M.C. 382(4) 385
Temps, F. 747(16) 748(16—17) 749(17) 751(16—17) 761(16) 768(17) 769—770(16—17) 771(17) 782(77—78) 783 785
ten Wilde, A. 59(31) 76
Terasaki, A. 382(20) 385
Tersigni, S. 59(28) 76 215(6) 218(6) 231(6) 235—236(6) 249(52) 270 272 286(2) 291 302(18) 313 317(6) 322 458(1) 458
Teshef, T. 855(8) 867
Tetra-atomic molecules, vibrational motion 529—536
Teukolsky, S.A. 332(30) 342
Thalweiser, R. 52(17—18) 63(41) 65(18) 72(54) 76—77 78(1) 79 90(2) 90 103(6) 117(14) 131 135(8) 137 217(17) 229—230(17) 271 328(10) 339—340(10) 341
Thermal capture rate constants 820 823—832
Thermal capture rate constants, HCl 830 831
Thermal capture rate constants, HCN 830—831
Thermal capture rate constants, locked-dipole 826
Thermal capture rate constants, nitrogen 845
Thermal capture rate constants, oxygen 845
Thermal capture rate constants, SACM 828—829
Thermal rigidity factor 828 831—832
Thermal rigidity factor, low-temperature limiting 827
Thermionic emission 656
Thiele, E. 596(2) 598(2) 598
Thirring, W. 495(15) 576
Thirumalai, D. 855(7) 867
Thomas, R.G. 505(44) 538—539(133) 577 580
Threshold photoelectron photoion coincidence 669
Threshold photoelectron spectroscopy 611—612 614 see
Threshold photoelectron spectroscopy, compared with photoelectron spectroscopy 614—615
Ti-sapphire laser system 49—50
Ticich, T.M. 327(3) 339(3) 341 373(6) 374
Time evolution 92
Time evolution operator 255—256
Time-dependent self-consistent-field methods 201
Time-of-flight spectrometer 51
Time-resolved spectroscopy, bound-free trimer transitions 122—126
Time-resolved spectroscopy, electronically excited states 103—109
Time-resolved spectroscopy, ground electronic states 109—111
Tobiason, J.D. 759(42) 761(49) 784
Toglhofer, K. 626(28) 646
Tomehave, H. 520(105) 579
Tominaga, K. 394(29) 399(29) 402
Tominga, K. 394(36) 403
Tomkins, F.S. 706(27—29) 708
Tomsovic, S. 504(39) 577
Toth, G.J. 250(59) 252(59) 272 319(10b) 322
Trace formulas 494—496
Tracking control 318
Transient two-photon ionization spectrum, 117—118
Transition state spectroscopy 809—816
Transition state theory, transmission probabilities 859
Transition states, reacting molecules, properties 894—895
Transition-dipole operator, angle-averaged 801
Transition-state switching, SACM 851
Transparency, laser-induced 302
Trapping, versus dilution, high Rydberg states 639—644
Trebino, R. 59(33—34) 76 346(3 9—10) 362(3) 370
Trentelman, K. 216(15) 223(15) 225(15) 271 286(13) 292 328(4) 339(4) 341
Triatomic molecules, NeNePo spectroscopy 114—117
Triatomic molecules, periodic orbits 585—586
Triatomic molecules, ultrashort-lived resonances 561—573
Triatomic molecules, ultrashort-lived resonances, 565—571
Triatomic molecules, ultrashort-lived resonances, 561—565
Triatomic molecules, ultrashort-lived resonances, 572—573
Triatomic molecules, ultrashort-lived resonances, 571—572
Triatomic molecules, ultrashort-lived resonances, 572
Triatomic molecules, ultrashort-lived resonances, lifetime comparison 573
Triatomic molecules, vibrational motion 525—529
Triatomic monohydride, linear, B value 485—486
Troe, J. 392(5) 393(8) 395(5 45) 399(8) 401—403 407 539(134) 580 750(24—25) 779(70—71) 784 815(2) 815 820(3 5—8 15—17) 821(17) 822(3 7—8 15—16) 823(15 18) 824(15) 827(7) 828(3 6—7 15) 829(3 15) 830—831(15) 832(3 15 19) 833(15) 835(5 20—22 24) 842(16) 843(32—37) 844—845(33) 846(3 8 15—16 34 37—39) 847—848
Tromp, J.W. 201(11) 202 854(2) 868(2) 867—868
Truhlar, D.G. 259(68—71) 262(72—73) 264(75) 272 493(9) 538(9) 575 745(5) 783 835(25) 847 854(5) 867
Tryptophan, multiphoton ionization 878—880
Tsuchiya, S. 465(1) 467(1) 490 791(11) 794(16) 797
Tsuji et al. 716
Tucker, S. 393(18) 402
Tunnelling, between enantiomers 381
Turner, D.W. 609(2) 616(2) 623
Turulski, J. 820(12 14) 847
Two-pendulum model 206—207
Udaltsov, V.S. 394(39) 403
Ulbricht, M. 102—103(1) 131
Ulmer, G. 626(23) 645
Ultrafast nonlinear spectroscopy 142
Ultrafast relaxation 101—130
Ultrafast relaxation, dimers, NeNePo spectroscopy of diatomics 111—114
Ultrafast relaxation, dimers, time-resolved spectroscopy, electronically excited states 103—109
Ultrafast relaxation, dimers, time-resolved spectroscopy, ground electronic states 109—111
Ultrafast relaxation, dimers, two-color experiments 106—108
Ultrafast relaxation, larger clusters 126—130
Ultrafast relaxation, larger clusters, bound-free transitions into excited states 126—129
Ultrafast relaxation, larger clusters, NeNePo experiments 129—130
Ultrafast relaxation, triatomics 114—126
Ultrafast relaxation, triatomics, ab initio full CI energy surfaces 117 119
Ultrafast relaxation, triatomics, NeNePo spectroscopy 114—117
Ultrafast relaxation, triatomics, pump-probe experiments 117—122
Ultrafast relaxation, triatomics, time-resolved spectroscopy 122—126
Ungar, H. 610—611(5) 623 626(13) 629(13) 645
Unimolecular dissociation, resonances 745—782
Unimolecular dissociation, resonances, DCO 768—772 781
Unimolecular dissociation, resonances, HCO 759—768 781
Unimolecular dissociation, resonances, HNO 772—775
Unimolecular dissociation, resonances, lifetime function 756 758—759
Unimolecular dissociation, resonances, potential-energy surfaces 752—754
Unimolecular dissociation, resonances, quantum mechanical calculations 755—759
Unimolecular dissociation, resonances, water 775—781
Unimolecular dissociation, reverse 820
Unimolecular reactions, polyatomic molecules 648—649
Unimolecular reactions, resonances 20—22
Untch, A. 746(8) 765(8 55—56) 767(56) 768(62) 778(8) 783 785
Ushakov, V.G. 820(3) 822(3) 828—829(3) 832(3) 843(34 36) 846(3 34 38) 847—848
Vacuum state 199
Vaida, V. 791—792(6) 795—796
Valachovic, L. 86(2) 87
Van Craen, J.C. 529(122) 580
van der Avoird, Ad. 432(67—68) 441
van der Velt, T. 493(11) 510(11) 537(6) 576
van der Waals complexes, coupling 446
van der Waals complexes, intermolecular vibrations 431—433
van der Zwan, C. 393(14) 394(14 31) 402—403
van Ede van der Pals, P. 520(103) 521(114) 534—536(114) 579
van Grondelle, R. 146(18) 152(18) 154(18) 157—159(18) 179
van Linden van den Heuvell, H.B. 59(31) 65(47) 76—77
van Mourik, F. 146(18) 152(18) 154(18) 157—159(18) 179
Van Vleck contact transformations 497
van Vleck, J.H. 703(6) 708 861(14) 867
Vander Auwera, J. 465(7) 488(7) 490 529(122) 580
Vander Wal, R.L. 327(3) 339(3) 341 373(6) 374 768(60) 785
Vansteenkiste, N. 302(10) 305(10) 307(10) 312
Varandas, A.J.C. 752(39) 784
Variational transition-state theory 407
Variational transition-state theory, compared with SACM, anisotropic charge-permanent dipole systems 839—841
Variational transition-state theory, compared with SACM, general potentials 841—842
Variational transition-state theory, compared with SACM, isotropic charge-locked permanent-dipole systems 836—839
Variational transition-state theory, compared with statistical adiabatic channel treatment 835—842
Variational transition-state theory, microcanonical 850—851
Varkking, M.J.J. 668(7) 682(7) 697
Vassen, W. 493(11) 510(11) 576
Vegiri, A. 765(55—56) 767(56) 785
Velsko, S.P. 393(11) 401
Vereoni, M. 236(34) 271
Vervloet, M. 705(15—16) 708 721
Vib-rotational wavefunctions 800—801
Vibrational cluster 811
Vibrational coherence, retention 176 178
Vibrational dynamics 148—160
Vibrational dynamics, asymmetric double well 150—151
Vibrational dynamics, barrierless double well 151—152
Vibrational dynamics, multilevel Redfield theory 148—152
Vibrational entropy, as function of slow and fast coordinates 396—397
Vibrational entropy, change 396
Vibrational heating, using nondestructive optical cycling 304—307
Vibrational levels, Franck — Condon factor 77
Vibrational motion, delocalization 95—96
Vibrational relaxation, energy dependence 194—195
Vibrational spacing, Morse-like 485
Vibrational spectra, with Wignerian level spacing 493
Vibrational transitions 327—340
Vibrational transitions in competition with dissipative processes 336—337
Vibrational transitions, above-threshold dissociation 336—338
Vibrational transitions, corresponding time-dependent Schroedinger equation 329
Vibrational transitions, double-well potential 329 331
Vibrational transitions, equation of motion, reduced-density operator 332—333
Vibrational transitions, individual vibrational-state-to-vibrational-state transitions 333—335
Vibrational transitions, IR femtosecond/picosecond laser pulses 328
Vibrational transitions, isomerization 338—340
Vibrational transitions, laser parameters in model systems 335
Vibrational transitions, models and techniques 328—333
Vibrational transitions, Morse oscillator tailored to OH bond 329—330
Vibrational transitions, OH and SBV potential-energy surfaces 329—331
Vibrational transitions, semibullvalenes 329 331
Vibrational transitions, series 335—337
Vibrational-state-to-vibrational-state transitions, individual 333—335
Vibrationally mediated photodissociation 747
Vibrogram 574
Vibrogram, emergent classical orbits and 520—524
Vibrogram, recurrences 536—537
Vidolova-Angelova, E.P. 662(8) 662 663(2) 663
Vigliotti, F. 664(1) 664 712(8—9) 715
Vilallonga, E. 315(2) 322
Villeneuve, D.M. 668(7) 682(7) 697
Vinogradov, An.V. 382(17 19) 385
Vinoxy radical 729—741
Vinoxy radical, B state 731
Vinoxy radical, intermediate in hydrocarbon combustion 731
Vinoxy radical, photochemistry 731
Vinoxy radical, photodissociation, + CO channel 737—739
Vinoxy radical, photodissociation, anisotropy parameter 735—736 742—743
Vinoxy radical, photodissociation, D + channel 739—740
Vinoxy radical, photodissociation, energetics 737—738
Vinoxy radical, photodissociation, experiment 732—733
Vinoxy radical, photodissociation, photofragment spectrum 735—736
Vinoxy radical, photodissociation, results 733—736
Vinoxy radical, photodissociation, translational energy distributions 734—735 742—744
Vinoxy radical, transition bands 731
Viriot, M.L. 279(2) 280
Visticot, J.P. 86(2) 87
Viswanathan, K.S. 617(19) 623
Voehringer, P. 348(20 22) 371 393(8) 399(8) 401
Volpi, G.G. 86(2) 87
von Bargen, A. 415(28) 440
von Dirke, M. 566(159) 573(159) 581 765(56) 767(56 58—59) 785 794(18a) 797
von Neumann, J. 238(35) 271
von Oppen, F. 519(100) 579
von Puttkamer, K. 454—455(1) 455
von Schnering, H.G. 339(35) 343
Voros, A. 505(42) 520(36) 577
Vos, M.H. 146(15) 160(15) 179
Voss, E. 407
Vrakking, M.J.J. 434(86—87) 437(86—87) 442 626(17) 629(17) 634(17) 645 668(15) 681(15) 697
VUV-PHOFEX spectrum, OCS, Fano profile 793—795 797
Waldeck, D.H. 393(11) 395(41 43) 399(43) 400(41) 401—403
Waldeck, J.R. 804(15) 806
Walker, B. 286(11) 292
Walker, G.C. 394(27) 399(27) 402
Wallace, S. 693(49) 698
Walls, D.F. 382(2) 385
Walmsley, I.A. 360(25) 371 800(3—5) 806
Walther, H. 542(142) 580
Wang, D. 760(43—44) 784
Wang, H. 841(30) 848
Wang, H.X. 91 91(1)
Wang, J. 465(5) 484—489(5) 490
Wang, J.-K. 41—42 195
Wang, K. 616(16) 623 668(1) 696
Wang, Q. 60(36) 62(36) 76 146(16—17) 151—152(17) 178(17) 179
Wang, X.-J. 515(70) 578
Wardlaw, D.M. 539(135) 580 750—751(23) 784 841(28) 842(31) 847—848
Warmuth, B. 79(7) 79—80 328(17) 335(17) 339(17) 341(17) 342
Warren, W.S. 40 48(9) 65(45—46) 75 77 274(3) 275 302(3) 312 315—316(1) 319(1) 322 346(5) 370 373(2) 373
Wasilewski, Z.R. 270(80) 273 286(10) 292
Watanabe, K. 570(156) 581 607(1) 623
Water, dissociation dynamics 775—781
Water, dissociation dynamics, ab initio calculations 787
Water, dissociation dynamics, erratic fluctuations 782
Water, dissociation dynamics, final-state distributions 776 778
Water, dissociation dynamics, nearest neighbor distribution 813
Water, dissociation dynamics, rotational product distributions 779—780
Water, dissociation dynamics, RRKM rate 776
Water, dissociation dynamics, state-specific unimolecular decay rates 812—813
Water, dissociation rates 759—760
Water, lifetime function 756 758—759
Water, motion 751
Water, potential well 775
Water, potential-energy surfaces 752—754
Water, resonance wave functions 775—777 786
Water, ultrashort-lived resonances 572—573
Watson, J.K.G. 485(14) 490 529(122) 580
Watson, R. 696(50) 698
Watt, D.M. 485(12) 488(12) 490
Wavefunctions, DCO 769 771
Wavefunctions, imaging, theory 800—803
Wavefunctions, partial 755—756
Wavefunctions, resonance, HCO 756—757
Wavefunctions, Rydberg-coupled and -uncoupled 703
Wavefunctions, total 755—756
wavepacket 14 see
Ðåêëàìà