Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry
Gaspard P. (ed.), Burghardt I. (ed.) — Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in CHEMICAL PHYSICS. Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale XXth Solvay Conference on Chemistry

Àâòîðû: Gaspard P. (ed.), Burghardt I. (ed.)

Àííîòàöèÿ:

Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universit? Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser.

The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed:

  • Femtochemistry: chemical reaction dynamics and their control
  • Coherent control with femtosecond laser pulses
  • Femtosecond chemical dynamics in condensed phases
  • Control of quantum many-body dynamics
  • Experimental observation of laser control
  • Solvent dynamics and RRKM theory of clusters
  • High-resolution spectroscopy and intramolecular dynamics
  • Molecular Rydberg states and ZEKE spectroscopy
  • Transition-state spectroscopy and photodissociation
  • Quantum and semiclassical theories of chemical reaction rates.

A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike.

The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second.

Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels.

The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed.

An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool.

From 1993 to 1996, she worked with Dr. P. Gaspard at the Universit? Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 945

Äîáàâëåíà â êàòàëîã: 11.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Swimm, R.T.      497(22) 576
Swwet, R.M.      405(4) 406
Syage, J.A.      41
Symmetric-stretch classical stability diagram      597—598
System-bath interactions      160—175 see
System-bath interactions, line shape function      160—164
System-bath model      263
Szabo, G.      250(59) 252(59) 272
Szakacs, T.      317(6) 322
Szarka, A.Z.      395(42) 399(42) 403
Taatjes, C.A.      730(2) 741
Tabche-Fouhaile, A.      612(9) 623
Tabor, M.      493(13) 506—507(13) 519(94) 576 579
Takahashi, A.      91(1) 91
Takami, T.      519(97) 579
Takayanagi, K.      820(10) 847
Takayanagi, M.      731(9) 741
Talkner, P.      392(3) 401
Tanaka, I.      4(9) 43
Tang, H.      218(20) 246(20) 253(20) 255(20) 257(20) 258(20) 271
Tanimura, Y.      182(1) 182
Tannor — Kosloff — Rice scheme      52 59
Tannor — Rice control scheme      216—217
Tannor — Rice control scheme, more sophisticated      217
Tannor — Rice perturbation theory      227
Tannor — Rice — Kosloff — Rabitz method      226—236
Tannor — Rice — Kosloff — Rabitz method, density matrix representation      235—236
Tannor — Rice — Kosloff — Rabitz method, excited-state-potential-energy surface      230 234—235
Tannor — Rice — Kosloff — Rabitz method, fragmentation      227
Tannor — Rice — Kosloff — Rabitz method, ground-state potential-energy surface      228
Tannor — Rice — Kosloff — Rabitz method, Hamiltonian      227
Tannor — Rice — Kosloff — Rabitz method, modified objective functional      231
Tannor — Rice — Kosloff — Rabitz method, optimal control field      236
Tannor — Rice — Kosloff — Rabitz method, optimal pulse shape calculation      232—234
Tannor — Rice — Kosloff — Rabitz method, product yield as function of pulse separation      229
Tannor — Rice — Kosloff — Rabitz method, pump-dump scheme      226
Tannor — Rice — Kosloff — Rabitz method, pump-dump scheme, pulse separation      228—229
Tannor, D.      233—234 239(40) 271 304(19) 313
Tannor, D.J.      48(3—4) 59(4 28) 75—76 78—79(2) 79 90(4) 90 138 196(5 7 10) 196 198 200(5) 201 204(1) 206 215—216(4—6) 218(6) 226(4 6) 228(5) 231(6) 235—236(6) 270 273(2) 274 282 286(2) 291 302(4 17 18) 312—313 317(6) 322 328(6) 339—340(6) 341 346(1) 370 373(1) 373 419(49) 440 458(1) 458
Tanrrago, G.      486(17) 490
Tardy, D.C.      849(1) 849
Tarn, T.J.      247(46—50) 248(47) 268(48) 272
Tarr, A.W.      296(8) 300
Taubes, G.      892
Tautomerization reactions, DNA models      34—37
Taylor, H.S.      557(150) 581 760(46) 776(68) 784—785
Teich, M.C.      382(4) 385
Temps, F.      747(16) 748(16—17) 749(17) 751(16—17) 761(16) 768(17) 769—770(16—17) 771(17) 782(77—78) 783 785
ten Wilde, A.      59(31) 76
Terasaki, A.      382(20) 385
Tersigni, S.      59(28) 76 215(6) 218(6) 231(6) 235—236(6) 249(52) 270 272 286(2) 291 302(18) 313 317(6) 322 458(1) 458
Teshef, T.      855(8) 867
Tetra-atomic molecules, vibrational motion      529—536
Teukolsky, S.A.      332(30) 342
Thalweiser, R.      52(17—18) 63(41) 65(18) 72(54) 76—77 78(1) 79 90(2) 90 103(6) 117(14) 131 135(8) 137 217(17) 229—230(17) 271 328(10) 339—340(10) 341
Thermal capture rate constants      820 823—832
Thermal capture rate constants, HCl      830 831
Thermal capture rate constants, HCN      830—831
Thermal capture rate constants, locked-dipole      826
Thermal capture rate constants, nitrogen      845
Thermal capture rate constants, oxygen      845
Thermal capture rate constants, SACM      828—829
Thermal rigidity factor      828 831—832
Thermal rigidity factor, low-temperature limiting      827
Thermionic emission      656
Thiele, E.      596(2) 598(2) 598
Thirring, W.      495(15) 576
Thirumalai, D.      855(7) 867
Thomas, R.G.      505(44) 538—539(133) 577 580
Threshold photoelectron photoion coincidence      669
Threshold photoelectron spectroscopy      611—612 614 see
Threshold photoelectron spectroscopy, compared with photoelectron spectroscopy      614—615
Ti-sapphire laser system      49—50
Ticich, T.M.      327(3) 339(3) 341 373(6) 374
Time evolution      92
Time evolution operator      255—256
Time-dependent self-consistent-field methods      201
Time-of-flight spectrometer      51
Time-resolved spectroscopy, bound-free trimer transitions      122—126
Time-resolved spectroscopy, electronically excited states      103—109
Time-resolved spectroscopy, ground electronic states      109—111
Tobiason, J.D.      759(42) 761(49) 784
Toglhofer, K.      626(28) 646
Tomehave, H.      520(105) 579
Tominaga, K.      394(29) 399(29) 402
Tominga, K.      394(36) 403
Tomkins, F.S.      706(27—29) 708
Tomsovic, S.      504(39) 577
Toth, G.J.      250(59) 252(59) 272 319(10b) 322
Trace formulas      494—496
Tracking control      318
Transient two-photon ionization spectrum, $Na_{3}$      117—118
Transition state spectroscopy      809—816
Transition state theory, transmission probabilities      859
Transition states, reacting molecules, properties      894—895
Transition-dipole operator, angle-averaged      801
Transition-state switching, SACM      851
Transparency, laser-induced      302
Trapping, versus dilution, high Rydberg states      639—644
Trebino, R.      59(33—34) 76 346(3 9—10) 362(3) 370
Trentelman, K.      216(15) 223(15) 225(15) 271 286(13) 292 328(4) 339(4) 341
Triatomic molecules, NeNePo spectroscopy      114—117
Triatomic molecules, periodic orbits      585—586
Triatomic molecules, ultrashort-lived resonances      561—573
Triatomic molecules, ultrashort-lived resonances, $CO_{2}$      565—571
Triatomic molecules, ultrashort-lived resonances, $HgI_{2}$      561—565
Triatomic molecules, ultrashort-lived resonances, $H_{2}O$      572—573
Triatomic molecules, ultrashort-lived resonances, $H_{3}$      571—572
Triatomic molecules, ultrashort-lived resonances, $O_{3}$      572
Triatomic molecules, ultrashort-lived resonances, lifetime comparison      573
Triatomic molecules, vibrational motion      525—529
Triatomic monohydride, linear, B value      485—486
Troe, J.      392(5) 393(8) 395(5 45) 399(8) 401—403 407 539(134) 580 750(24—25) 779(70—71) 784 815(2) 815 820(3 5—8 15—17) 821(17) 822(3 7—8 15—16) 823(15 18) 824(15) 827(7) 828(3 6—7 15) 829(3 15) 830—831(15) 832(3 15 19) 833(15) 835(5 20—22 24) 842(16) 843(32—37) 844—845(33) 846(3 8 15—16 34 37—39) 847—848
Tromp, J.W.      201(11) 202 854(2) 868(2) 867—868
Truhlar, D.G.      259(68—71) 262(72—73) 264(75) 272 493(9) 538(9) 575 745(5) 783 835(25) 847 854(5) 867
Tryptophan, multiphoton ionization      878—880
Tsuchiya, S.      465(1) 467(1) 490 791(11) 794(16) 797
Tsuji et al.      716
Tucker, S.      393(18) 402
Tunnelling, between enantiomers      381
Turner, D.W.      609(2) 616(2) 623
Turulski, J.      820(12 14) 847
Two-pendulum model      206—207
Udaltsov, V.S.      394(39) 403
Ulbricht, M.      102—103(1) 131
Ulmer, G.      626(23) 645
Ultrafast nonlinear spectroscopy      142
Ultrafast relaxation      101—130
Ultrafast relaxation, dimers, NeNePo spectroscopy of diatomics      111—114
Ultrafast relaxation, dimers, time-resolved spectroscopy, electronically excited states      103—109
Ultrafast relaxation, dimers, time-resolved spectroscopy, ground electronic states      109—111
Ultrafast relaxation, dimers, two-color experiments      106—108
Ultrafast relaxation, larger clusters      126—130
Ultrafast relaxation, larger clusters, bound-free transitions into excited states      126—129
Ultrafast relaxation, larger clusters, NeNePo experiments      129—130
Ultrafast relaxation, triatomics      114—126
Ultrafast relaxation, triatomics, ab initio full CI energy surfaces      117 119
Ultrafast relaxation, triatomics, NeNePo spectroscopy      114—117
Ultrafast relaxation, triatomics, pump-probe experiments      117—122
Ultrafast relaxation, triatomics, time-resolved spectroscopy      122—126
Ungar, H.      610—611(5) 623 626(13) 629(13) 645
Unimolecular dissociation, resonances      745—782
Unimolecular dissociation, resonances, DCO      768—772 781
Unimolecular dissociation, resonances, HCO      759—768 781
Unimolecular dissociation, resonances, HNO      772—775
Unimolecular dissociation, resonances, lifetime function      756 758—759
Unimolecular dissociation, resonances, potential-energy surfaces      752—754
Unimolecular dissociation, resonances, quantum mechanical calculations      755—759
Unimolecular dissociation, resonances, water      775—781
Unimolecular dissociation, reverse      820
Unimolecular reactions, polyatomic molecules      648—649
Unimolecular reactions, resonances      20—22
Untch, A.      746(8) 765(8 55—56) 767(56) 768(62) 778(8) 783 785
Ushakov, V.G.      820(3) 822(3) 828—829(3) 832(3) 843(34 36) 846(3 34 38) 847—848
Vacuum state      199
Vaida, V.      791—792(6) 795—796
Valachovic, L.      86(2) 87
Van Craen, J.C.      529(122) 580
van der Avoird, Ad.      432(67—68) 441
van der Velt, T.      493(11) 510(11) 537(6) 576
van der Waals complexes, coupling      446
van der Waals complexes, intermolecular vibrations      431—433
van der Zwan, C.      393(14) 394(14 31) 402—403
van Ede van der Pals, P.      520(103) 521(114) 534—536(114) 579
van Grondelle, R.      146(18) 152(18) 154(18) 157—159(18) 179
van Linden van den Heuvell, H.B.      59(31) 65(47) 76—77
van Mourik, F.      146(18) 152(18) 154(18) 157—159(18) 179
Van Vleck contact transformations      497
van Vleck, J.H.      703(6) 708 861(14) 867
Vander Auwera, J.      465(7) 488(7) 490 529(122) 580
Vander Wal, R.L.      327(3) 339(3) 341 373(6) 374 768(60) 785
Vansteenkiste, N.      302(10) 305(10) 307(10) 312
Varandas, A.J.C.      752(39) 784
Variational transition-state theory      407
Variational transition-state theory, compared with SACM, anisotropic charge-permanent dipole systems      839—841
Variational transition-state theory, compared with SACM, general potentials      841—842
Variational transition-state theory, compared with SACM, isotropic charge-locked permanent-dipole systems      836—839
Variational transition-state theory, compared with statistical adiabatic channel treatment      835—842
Variational transition-state theory, microcanonical      850—851
Varkking, M.J.J.      668(7) 682(7) 697
Vassen, W.      493(11) 510(11) 576
Vegiri, A.      765(55—56) 767(56) 785
Velsko, S.P.      393(11) 401
Vereoni, M.      236(34) 271
Vervloet, M.      705(15—16) 708 721
Vib-rotational wavefunctions      800—801
Vibrational cluster      811
Vibrational coherence, retention      176 178
Vibrational dynamics      148—160
Vibrational dynamics, asymmetric double well      150—151
Vibrational dynamics, barrierless double well      151—152
Vibrational dynamics, multilevel Redfield theory      148—152
Vibrational entropy, as function of slow and fast coordinates      396—397
Vibrational entropy, change      396
Vibrational heating, using nondestructive optical cycling      304—307
Vibrational levels, Franck — Condon factor      77
Vibrational motion, delocalization      95—96
Vibrational relaxation, energy dependence      194—195
Vibrational spacing, Morse-like      485
Vibrational spectra, with Wignerian level spacing      493
Vibrational transitions      327—340
Vibrational transitions in competition with dissipative processes      336—337
Vibrational transitions, above-threshold dissociation      336—338
Vibrational transitions, corresponding time-dependent Schroedinger equation      329
Vibrational transitions, double-well potential      329 331
Vibrational transitions, equation of motion, reduced-density operator      332—333
Vibrational transitions, individual vibrational-state-to-vibrational-state transitions      333—335
Vibrational transitions, IR femtosecond/picosecond laser pulses      328
Vibrational transitions, isomerization      338—340
Vibrational transitions, laser parameters in model systems      335
Vibrational transitions, models and techniques      328—333
Vibrational transitions, Morse oscillator tailored to OH bond      329—330
Vibrational transitions, OH and SBV potential-energy surfaces      329—331
Vibrational transitions, semibullvalenes      329 331
Vibrational transitions, series      335—337
Vibrational-state-to-vibrational-state transitions, individual      333—335
Vibrationally mediated photodissociation      747
Vibrogram      574
Vibrogram, emergent classical orbits and      520—524
Vibrogram, recurrences      536—537
Vidolova-Angelova, E.P.      662(8) 662 663(2) 663
Vigliotti, F.      664(1) 664 712(8—9) 715
Vilallonga, E.      315(2) 322
Villeneuve, D.M.      668(7) 682(7) 697
Vinogradov, An.V.      382(17 19) 385
Vinoxy radical      729—741
Vinoxy radical, B state      731
Vinoxy radical, intermediate in hydrocarbon combustion      731
Vinoxy radical, photochemistry      731
Vinoxy radical, photodissociation, $CH_{3}$ + CO channel      737—739
Vinoxy radical, photodissociation, anisotropy parameter      735—736 742—743
Vinoxy radical, photodissociation, D + $CD_{2}CO$ channel      739—740
Vinoxy radical, photodissociation, energetics      737—738
Vinoxy radical, photodissociation, experiment      732—733
Vinoxy radical, photodissociation, photofragment spectrum      735—736
Vinoxy radical, photodissociation, results      733—736
Vinoxy radical, photodissociation, translational energy distributions      734—735 742—744
Vinoxy radical, transition bands      731
Viriot, M.L.      279(2) 280
Visticot, J.P.      86(2) 87
Viswanathan, K.S.      617(19) 623
Voehringer, P.      348(20 22) 371 393(8) 399(8) 401
Volpi, G.G.      86(2) 87
von Bargen, A.      415(28) 440
von Dirke, M.      566(159) 573(159) 581 765(56) 767(56 58—59) 785 794(18a) 797
von Neumann, J.      238(35) 271
von Oppen, F.      519(100) 579
von Puttkamer, K.      454—455(1) 455
von Schnering, H.G.      339(35) 343
Voros, A.      505(42) 520(36) 577
Vos, M.H.      146(15) 160(15) 179
Voss, E.      407
Vrakking, M.J.J.      434(86—87) 437(86—87) 442 626(17) 629(17) 634(17) 645 668(15) 681(15) 697
VUV-PHOFEX spectrum, OCS, Fano profile      793—795 797
Waldeck, D.H.      393(11) 395(41 43) 399(43) 400(41) 401—403
Waldeck, J.R.      804(15) 806
Walker, B.      286(11) 292
Walker, G.C.      394(27) 399(27) 402
Wallace, S.      693(49) 698
Walls, D.F.      382(2) 385
Walmsley, I.A.      360(25) 371 800(3—5) 806
Walther, H.      542(142) 580
Wang, D.      760(43—44) 784
Wang, H.      841(30) 848
Wang, H.X.      91 91(1)
Wang, J.      465(5) 484—489(5) 490
Wang, J.-K.      41—42 195
Wang, K.      616(16) 623 668(1) 696
Wang, Q.      60(36) 62(36) 76 146(16—17) 151—152(17) 178(17) 179
Wang, X.-J.      515(70) 578
Wardlaw, D.M.      539(135) 580 750—751(23) 784 841(28) 842(31) 847—848
Warmuth, B.      79(7) 79—80 328(17) 335(17) 339(17) 341(17) 342
Warren, W.S.      40 48(9) 65(45—46) 75 77 274(3) 275 302(3) 312 315—316(1) 319(1) 322 346(5) 370 373(2) 373
Wasilewski, Z.R.      270(80) 273 286(10) 292
Watanabe, K.      570(156) 581 607(1) 623
Water, dissociation dynamics      775—781
Water, dissociation dynamics, ab initio calculations      787
Water, dissociation dynamics, erratic fluctuations      782
Water, dissociation dynamics, final-state distributions      776 778
Water, dissociation dynamics, nearest neighbor distribution      813
Water, dissociation dynamics, rotational product distributions      779—780
Water, dissociation dynamics, RRKM rate      776
Water, dissociation dynamics, state-specific unimolecular decay rates      812—813
Water, dissociation rates      759—760
Water, lifetime function      756 758—759
Water, motion      751
Water, potential well      775
Water, potential-energy surfaces      752—754
Water, resonance wave functions      775—777 786
Water, ultrashort-lived resonances      572—573
Watson, J.K.G.      485(14) 490 529(122) 580
Watson, R.      696(50) 698
Watt, D.M.      485(12) 488(12) 490
Wavefunctions, DCO      769 771
Wavefunctions, imaging, theory      800—803
Wavefunctions, partial      755—756
Wavefunctions, resonance, HCO      756—757
Wavefunctions, Rydberg-coupled and -uncoupled      703
Wavefunctions, total      755—756
wavepacket      14 see
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå